

Non-Local Anomalous Diffusion

Diffusion is the result of the random Brownian motion of individual particles.

The mean square displacement of a particle is a linear function of time

$$\sigma_r^2 \sim Dt$$

For the Brownian motion, the probability density function in space, evolving in time, is of the Gaussian type

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Spring 2014 Semi-Annual Affiliates Meeting, May 2, 2014, Golden, Colorado

2

Inner Reservoir Solution (Time Fractional)			
Flux Term	Diffusion Eq		
$v = -\lambda \downarrow \alpha \partial \uparrow 1 - \alpha / \partial t \uparrow 1 - \alpha (\partial \Delta p \downarrow I / \partial x)$ Outer Boundary Condition :	$\frac{\partial}{\partial x} \{\lambda \downarrow \alpha \ \partial \Delta p \downarrow I / \partial x \} + \frac{\partial}{\partial y} \{ \lambda \downarrow \alpha \ \partial \Delta p \downarrow I / \partial y \} = (\phi c \downarrow t) \downarrow I \ \partial \uparrow \alpha / \partial t \uparrow \alpha \ \Delta p \downarrow I $ $(dp \ \downarrow ID / dy \downarrow D) \downarrow y \downarrow D = y \downarrow eD = 0$		
Inner Boundary Condition :	$(p \downarrow ID) \downarrow y \downarrow D = w \downarrow D/2 = (p \downarrow FD) \downarrow y \downarrow D =$		
Solution for Inner Res. :	$(p \downarrow ID) \downarrow y \downarrow D = w \downarrow D / 2 = (p \downarrow FD) \downarrow y \downarrow D = w \downarrow D / 2 cosh[\sqrt{\alpha \downarrow O} (y \downarrow eD - y \downarrow D)]/cosh[\sqrt{\alpha \downarrow O} (y \downarrow eD - w \downarrow D) / 2] $		
UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT 8 Spring 2014 Semi-Annual Affiliates Meeting, May 2, 2014, Golden, Colorado 8			

Inner Reservoir Solution (Space & Time Fractional)			
Flux Term:	$v = -\lambda \downarrow a$ $\partial t \uparrow 1 - a$	α,β δ†1–α / ε (δ†β /δα†β Δ	
Diffusion Equation:	p]] δ/∂x { λ↓α,β ∂↑α /δ	[λ↓α,β ∂↑β /∂x↑β Δp↓I }+∂/d ∂↑β /∂y↑β Δp↓I }=(φc↓t)↓I ∂t↑α Δp↓I	₽у {
Continuity of flux at the boundary of the inner and outer res:		$\lambda \downarrow \alpha, \beta \partial \uparrow 1 - \alpha / \partial t \uparrow 1 - \alpha (\partial f) \\ \partial x \uparrow \beta \Delta p \downarrow I) \downarrow x = x \downarrow F = k \downarrow o \\ \partial x \Delta p \downarrow o) \downarrow x = x \downarrow F$	β μ (∂
Solution for Inner Res.			
p ↓ID (y↓D , ∂1β /∂y↓D1, +1 (α↓O y↓I	s)=p↓ID β p↓ID (D1β+1)	$ \begin{array}{l} (0,s)E\downarrow\beta+1 (\alpha\downarrow O y\downarrow D\uparrow\beta+1) \\ (y\downarrow D,s)]\downarrow y\downarrow D=0 y\downarrow D\uparrow\beta E\downarrow\beta+1 \\ \end{array} $)+[-1,β
UNCONVENTIONAL Spring 2014 Semi-A	RESERVOIR E	NGINEERING PROJECT Meeting, May 2, 2014, Golden, Colorado	13

