

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

Estimating Diffusivity Coefficient by Molecular Dynamics Simulation

Yakup Berk Coskuner MS Petroleum Engineering Colorado School of Mines

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Introduction: Statistical Mechanics

Monte Carlo Simulation

- Time independent
- Statistical ensemble and configurations are sampled by random walk, Metropolis, and Gibbs sampling approach
- Yields thermodynamic and structural properties

Molecular Dynamics

- Time dependent: the time step size varies from femtoseconds (10⁻¹⁵) to nanoseconds (10⁻⁹)
- The algorithm solves Newton F=ma equation
- Yields thermodynamic, structural, and dynamic properties

Introduction: Monte Carlo Simulation

Introduction: Molecular Dynamics

Retrieved from, https://en.wikipedia.org

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Introduction: Statistical Ensembles

Microcanonical ensemble	Canonical ensemble	Grand canonical ensemble	Gibbs or isobaric- isothermal ensemble	
Number of particles	Number of particles	Chemical potential	Number of particles	
Volume	Volume	Volume	Pressure	
Energy	Temperature	Temperature	Temperature	
Microcanonical (const. NVE)	Canonical (const. NVT)	Grand Canonical (const. µVT)	Gibbs or Isobaric-isothermal (const. NPT)	

Modified from Wikipedia.com

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Introduction: Mean Square Displacement (MSD)

- The mode of displacement of particles with respect to a reference position over time. It determines if a particle is:
 - Freely diffusing
 - Transported
 - Bound and limited in its movement

Rerieved from mathworks.com

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Introduction: Anomalous Diffusion

- The diffusion process is described by a power law
 - $MSD = \langle r^2 \rangle$
 - $\langle \mathbf{r}^2 \rangle = \mathrm{Dt}^{\alpha}$
 - $\alpha = 1$ normal diffusion
 - $\langle \mathbf{r}^2 \rangle = Dt$
 - $\alpha < 1$ subdiffusion
 - $\langle \mathbf{r}^2 \rangle = D t^{\alpha}$
 - $\alpha > 1$ superdiffusion
 - $\langle \mathbf{r}^2 \rangle = D t^{\alpha}$

Retrieved from Wikipedia.com

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Introduction: Diffusivity Coefficient Calculation

•
$$D = \frac{1}{2*n} \frac{\langle r(t) - r(t_0)^2 \rangle}{t - t_0}$$

- $\langle r(t) r(t_0)^2 \rangle = MSD$, calculated by the molecular dynamics simulator
- n = 3, dimension of the system
- t = time at which the diffusivity is calculated
- t_0 = reference time
- The particles in the system must reach homogenous state, to use this equation.

Dimensions of the Carbon Nanotube System

Sample Input

A deterministic algorithm			Molecular Dynamics				?	×		
for constant temperature		Molecular Dynamics		NVT Nose Hoover				Each time step is 1		
	case		Туре	NVT Nose Hoover 💌	Time step		1 fs	•	+	femtosecond
	Total steps		Steps	60000 ≑	Reservoir temperature	42	2 K			Initial temperature of
	Resolution		Log interval	100	Thermostat timescale	10	0 fs	-		the system
			Save trajectory	trajectory.nc	Final temperature	42	2 K			Timescale to change
					Chain length	3	÷			the temperature
										Final temperature of the system
	Initial velocity calculation									
algorithm, The			Initial Velocity		1					
te	emperature of the		Temperature	422 K	1					
system is fixed to 422 Kelvin			Remove center-	of-mass momentum	J					
			IO							
	Velocity		Save Print	meStepMethane.nc	Label					
	temperature						OK			

Animation of the system

100 methane molecules simulated in each case
Initial pressure of each system is 1690 psi (calculated by real gas law)

Results: Two pores connected with a nanotube

- Sub-diffusion observed in both cases
- The 1st pore is huge compared to the 2nd pore. The output of the simulation is dominated by the 1st pore, where the initial configuration was set.

Results from literature

Retrieved from Jakobtorweihen et al.

- The temperature influence is not uniform throughout different pore sizes
- Diffusivity decreases as temperature increases in smaller pores (<5 nm)
 - Due to competing influences of collision frequency and temperature
- At larger pores temperature increases the diffusivity (>5 nm)
 - Due to increase in the velocity (competition between the molecules is negligible)

Dimensions of a single nanotube system

- 2.7 nm diameter
- 157 nm thickness
- Periodic boundary condition

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Results: 2.7 nm Nanotube

- Normal diffusion at 310 Kelvin
- Sub diffusion at early times of 422 Kelvin, then normal diffusion after 29 ps.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Conclusion

- Diffusivity of methane in nanotube was studied in terms of:
 - Effect of the pore geometry
 - Effect of the temperature
- At smaller pores (2.7 nm in this study) it is favorable to decrease the temperature, which prevents the molecules from competing and allows them to diffuse faster.
 - At lower temperature (310 Kelvin) \rightarrow normal diffusion
 - At higher temperature (422 Kelvin) \rightarrow anomalous diffusion
- At larger pores (11 nm in this study) increasing temperature enhances diffusivity by increasing their energies.
 - Due to the pore geometry, diffusion at both 310 K and 422 K was anomalous diffusion
 - No periodic boundary conditions
 - The system was closed by a carbon wall, which confines the particles

Future Studies

- Create 10 different nanotube systems, of which pore diameters vary between 1-10 nm
 - For each of them, run simulations at 300K, 400K and 500K
 - Create a graph similar to published literature
- Increase the complexity of the system by connecting two or more pores with different diameters
 - Check the effect of the temperature
- Include clay minerals in the pores
- Include large hydrocarbons (representing kerogen)
- Simulate a methane-heptane mixture and check if there is any difference between the diffusivity rates

THANK YOU

