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From a fundamental perspective, a major cause of the 
modeling and characterization problems in nano-porous 
formations is the inadequacy of the traditional perceptions 
to describe the movement of fluid molecules in 
 

•  extremely small confinement  
•  spatially disordered media and 
•  the fractal geometry of the cascade and the scales of 

natural fractures 
 

Recently, anomalous diffusion has received attention in the 
context of stochastic physics to describe many physical 
scenarios similar to those in unconventional reservoirs  

Problems in Flow Modeling and a Solution      
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Diffusion is the result of the random 
Brownian motion of individual particles. 
 

The mean square displacement of a 
particle is a linear function of time 
 

   σr
2 ~ Dt  

 

For the Brownian motion, the probability 
density function in space, evolving in time, 
is of the Gaussian type 
 

This is a presumption of the use of 
Laplacian operator 
 

     Diffusion 
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However, a convincing number of works have indicated 
anomalous diffusion in which the mean square variance 
grows faster (superdiffusion) or slower (subdiffusion) than 
that in a Gaussian diffusion process.  
 

Thus, a general relationship between the mean square 
variance and time is given by 
 

   σr
2 ~ Dtα 

 

  α = 1 Normal Diffusion 
  α ≠ 1 Anomalous Diffusion:  
  α > 1 Superdiffusion 
  α < 1 Subdiffusion.  

Anomalous Diffusion 
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Fick’s first law (diffusive flux) for one dimensional diffusion 

Fick’s second law (continuity equation): 

Defining scaled variables  

where x0, t0, and C0 are the characteristics scales, we have 

Modeling Diffusion 
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Dimensional     Dimensionless 

Dimensionless and dimensional diffusion equations are the 
form if the spatial and temporal scales are related by 

Typical for normal (Fickian) diffusion    x0
2 = t0

   
x2  t2 2+θ( )

θ : index of anomalous diffusion (θ = 0 normal diffusion) 
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For fractal objects, the mean-square displacement of a 
random walker depends on time as follows: 

Modeling Diffusion 

Physical & Mathematical Basis 
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For anomalous diffusion (the generalized case), the continuity 
equation, flux equation, or both should be modified to satisfy 

Anomalous Diffusion 

   
x2  t2 2+θ( )    and   θ = 0 ⇒  normal diffusion

 
JC = −D ∂C

∂x

For normal diffusion               and 
   

x2  t

Flux Equation:  
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Substitution into continuity equation yields  

Modeling Anomalous Diffusion 

   
x2  t2 2+θ( )

 
D x( ) = D fθ x−θ

Option 1: 
  

   Define     : effective coefficient of diffusion (constant)  

In dimensionless form 
 
 
 

which satisfies the scale relation 
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Example: For the Koch curve 
(df = ln4 / ln3),  triple increase 
in spatial scale creates 16-fold 
increase in temporal scale:  

 
D x( ) = D fθ x−θ

Option 1: 
  

    

The index of anomalous diffusion, θ, is determined by the 
fractal dimension of the medium, df.  

  
32+θ =16⇒ 2+θ = 2 ln4

ln3
= 2d f ⇒θ = 2d f −2
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D x( ) = D fθ x−θ

Option 1: 
  

    

This approach has been used in petroleum engineering 
literature to model flow in naturally fractured media; e.g., 
 
 
Sahimi and Yortsos (1970), Chang and Yortsos (1990), Flamenco-Lopez 
and Camacho (2003), Camacho et al. (2008), Camacho et al. (2011), etc. 
 

This approach has limitations when we do not have 
symmetry in the system, etc.   

 
φ r( )∝ rd f −d

  
k r( )∝ rd f −d−dw+2
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x2  t2 2+θ( )

Option 2: 
 

Let β = θ+1 and define a flux proportional to the fractional 
gradient of concentration of order β   

which satisfy 

 
JC = −D f β
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Then the dimensional and dimensionless forms of the 
continuity equation become 
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Anomalous Diffusion 
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Option 2: 
 

The new diffusion equation 

Note that 

  

∂
∂x

∂β

∂xβ

#

$
%
%

&

'
(
(=

∂1+β

∂x1+β
=
∂2+θ

∂x2+θ

The order of the spatial derivatives is larger than 2 
 

More than 2 space boundary conditions is required  
(for θ=0, it does not default to normal diffusion) 
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Option 2: 
 

To have physically meaningful boundary conditions, the 
order of the spatial derivative should be 2 or less 
 

This imposes the requirement that β ≤ 1 in    

β < 1 : non-local spatial gradients (long-range interactions) 
 
 

To satisfy the scale relation, 
 

the flux relation should also include a fractional temporal 
derivative (temporal non-locality,  memory dependence) 

 
JC = −D f β

∂βC

∂xβ

   
x2  t2 2+θ( )
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Option 2: 
 

Let us define a new flux relation by 

where the Caputo definition of the temporal and spatial 
fractional derivatives are given by  

  
JC = D f γβ ∂t
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Option 2: 
 

With the new non-local flux, the continuity equation becomes 

The scale analysis yields 
 
 
 
β and γ should be such that the the scale relation is satisfied 
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Option 2: 
 

Riemann-Liouville fractional integration & derivative of order α    
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and the fractional derivative is non-local (it is a convolution; it 
depends on the values of C(t) much farther away from t)  
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Option 2: 
 

Applying the Riemann-Liouville fractional integration to both 
sides of   

we obtain the common form of non-local, time-fractional, 
anomalous diffusion equation 
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Non-Local Anomalous Diffusion 
Comparison of mean square displacement vs. time for 
normal and anomalous diffusion (Fomin et al., 2011) 

Df =1 
df = 1.27 
θ = 0.5 

normal 
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Non-Local Anomalous Diffusion 
Comparison of mean square displacement vs. time for 
normal and anomalous diffusion (Fomin et al., 2011) 

Df =1 
df = 1.27 
θ = 0.5 

normal 
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1D Normal Diffusion 
Diffusive Flux 
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Integer Derivative 

Definitions are straightforward 
BUT 

Characterization is not very successful 
Matching the field data is not convincing 
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1D Non-Local Anomalous Diffusion 

Fractional Derivative 
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Fractional derivatives are non-local and memory dependent 
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Continuity Equation): Diffusive Flux 
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What is next? 
 

How does this new perception change reservoir 
characterization and flow modeling?  
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How do you estimate a diffusivity coefficient (or 
permeability) which is defined by a non-local, memory 
dependent flux law? 
 

How do we use data to determine the fractional powers of 
the temporal and spatial derivatives? 
… 
… 
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