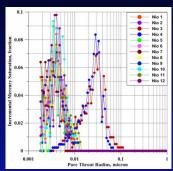


UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Filtration Experiments in Niobrara Samples

Ziming Zhu Ph.D. Petroleum Engineering Colorado School of Mines


UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov 3, 2017, Golden, Colorado

Problem Statement

 Sizes of pore throats of Niobrara samples and hydrocarbon molecules are in nanometer range

	Pore throat / molecular diameter			
Niobrara B chalk	1 85.2 nm			
Niobrara	4.6 11.9 nm			
Paraffins	0.4 1 nm			
Aromatics	1 3 nm			
Asphaltene	5 10 nm			

pore throat size distribution of Niobrara sample

Niobrara sample may potentially act as a semi-permeable membrane

Hypothesis:

Light components can pass through

Heavy components might be hindered or filtered (partially/completely)

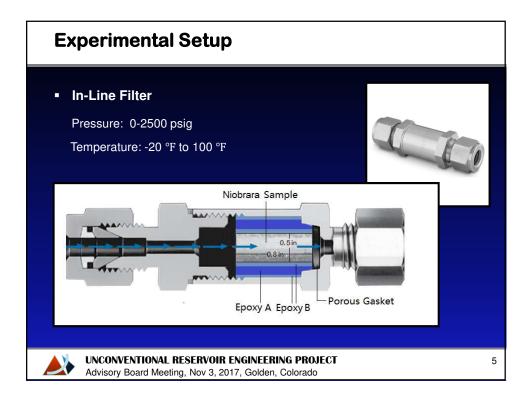
3

Objective

- Explore the membrane property of Niobrara sample
- Investigate factors affecting the membrane effect of Niobrara sample

Pressure

Temperature


Adsorption

Mineralogy

Hydrocarbon species

...

Result & Discussion

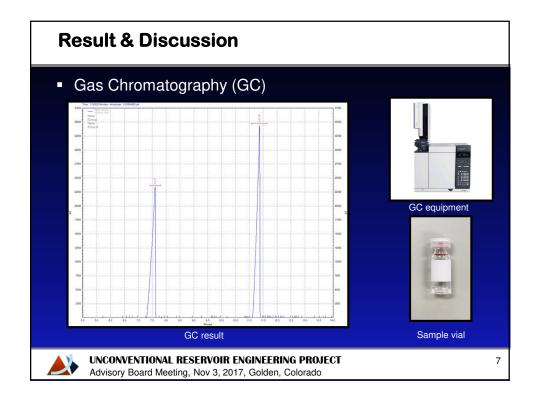
Injection fluid

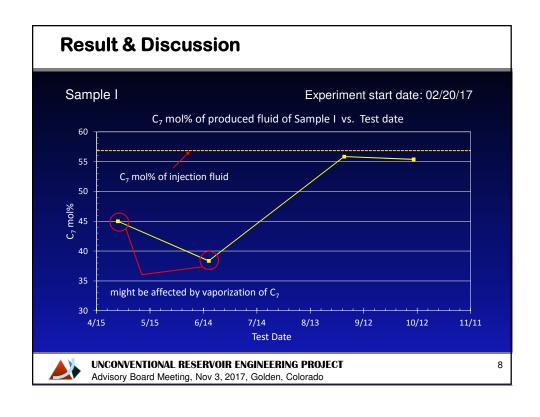
Equal-volume mixture of C_7 and C_{10}

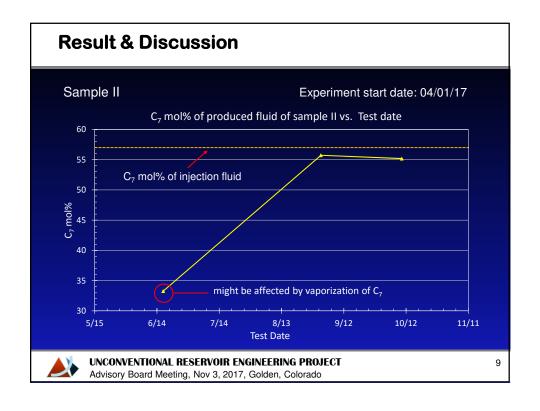
C₇ 57 mol% C₁₀ 43 mol%

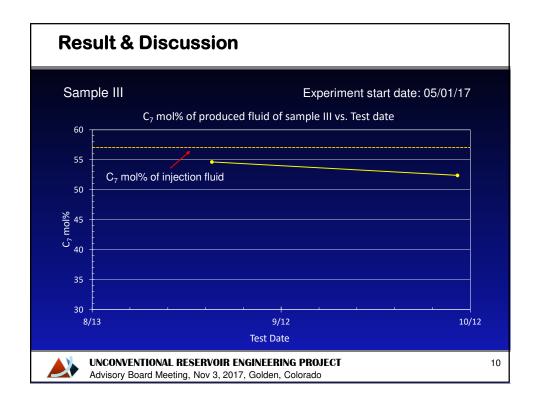
Produced fluid

Composition (mol%) of produced fluid from GC test


		1 st test	2 nd test	3 rd test	4 th test
Sample I	C ₇	45	38	56	55
	C ₁₀	54	62	44	45
Sample II	C ₇	33	56	55	Result presented
	C ₁₀	67	44	45	previous meeting
Sample III	C ₇	55	53		Reason for C_7 reduction was t
	C ₁₀	45	47		to be adsorption

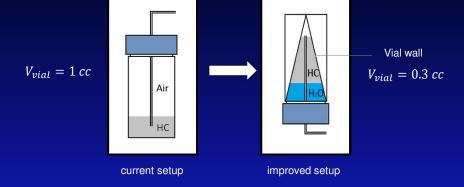



UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT


Advisory Board Meeting, Nov 3, 2017, Golden, Colorado

6

Conclusion


- Filtration experiments were conducted using alkane mixtures
- Fraction of C₇ is observed to decrease in produced fluids compared with injection fluid
- GC result of some data points might be affected by vaporization of C₇
 (samples were not tested immediately after collection)
- Excluding the effects of vaporization of light component (C₇), no dramatic
 filtration effect observed for the transport of C₇ C₁₀ mixture in Niobrara sample

11

Future Work

 Collecting setup and experimental procedure need to be improved to reduce vaporization

12

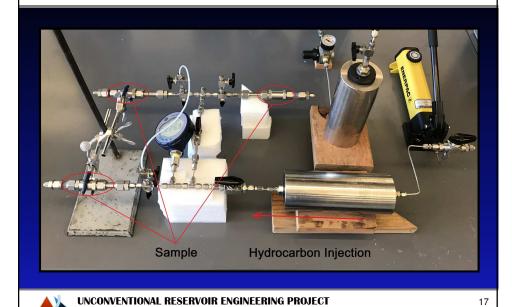
Future Work

- Hydrocarbons with larger molecular sizes should be tested.
- Develop a two-component transport model with adsorption/filtration to fit/match experimental data

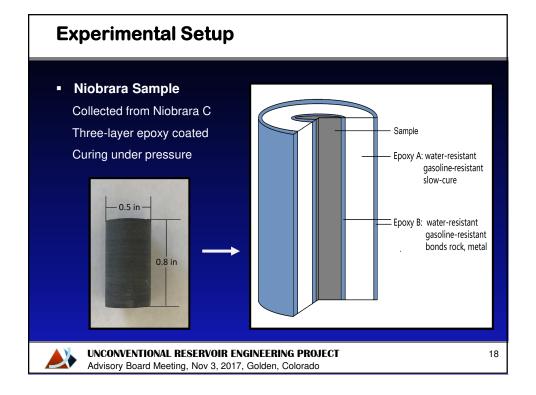
13

References

Cho, Y., Eker, E., Uzun, I. et al. 2016. Rock Characterization in Unconventional Reservoirs: A Comparative Study of Bakken, Eagle Ford, and Niobrara Formations. Paper SPE 180239 presented at the SPE Low Perm Symposium, Denver, Colorado, 5-6 May. https://doi.org/10.2118/180239-MS


Kuila, U., Prasad, M., Derkowski, A. et al. 2012. Compositional Controls on Mudrock Pore-Size Distribution: An Example from Niobrara Formation. Paper SPE 160141 presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 8-10 October. https://doi.org/10.2118/160141-MS

Nelson, P. H. 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. *AAPG Bulletin* **93** (3): 329-340. https://doi.org/10.1306/10240808059



Experimental Setup

Advisory Board Meeting, Nov 3, 2017, Golden, Colorado

