

Research Progress Report

LABORATORY STUDY OF HYDROCARBON FILTRATION

Advisors: Dr. Ozkan, Dr. Zerpa Presenter: Zhijun (Julian) Liu

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Content

- Part I: Literature Review
- Part II: Experiment Modification
- Part III: Results discussion
- Part IV: Conclusions
- Part V: Future Work

Part I Literature Review

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Part I: Literature Review

- Organic Solvent Nano-Filtration (OSNF)

Definition: Membrane MWCO/Filtration Efficiency

Figure 7. Schematic representation of rejection profile for uncharged solutes by a membrane with uniform pore sizes (r_p) between 0.75 and 1.5 nm by Donnan steric pore-flow model.³⁶ The dashed lines were obtained by simulation; the solid line represents the desired rejection profile. Adapted with permission from ref 37. Copyright 2013 Elsevier.

P. Marchetti, etc. 2014 Molecular Separation with Organic Solvent Nanofiltration - A Critical Review

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Part II Experiment Modification

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- <u>Old Membrane:</u>
- Puramem Series by Evonik
 - 280 Da (pore size: ~1.4 nm)
 - Compatible fluid:
 - Aliphatic hydrocarbons (*Hexane*, Heptane)
 - Aromatic hydrocarbons
 (Toluene)
- PEEK Series by Novamem
 - PEEK5 (pore size: ~ 5nm)
 - Compatible fluid:
 - Resistance to almost any known organic solvents

- <u>New Membrane:</u>
- Duramem Series by Evonik
 - 150 Da to 900 Da
 (Pore size: ~0.75-4.5nm)
 - Compatible fluid:
 - Acetone
 - Tetrahydrofuran
 - Methanol, Ethanol
 - Methyl-tert-Butyl-Ether
 - Methyl-Ethyl-Ketone
 - Methyl-iso-Butyl-Ketone
 - Butyl Acetate

a. Testing Materials [Chemicals]

Hydrocarbon Component (Light)

Hydrocarbon Component (Heavy)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

b. Set-Up [Fixing Leakage]

Compatible O-Rings

O-Rings do NOT react with solvents (solutes does not matter)
 EPR O-Ring: Acetone and Hexane
 FKM O-Ring: Toluene

Leak Test

Filled the system with blue dyed water under 500 psi; plastic layer in replace of membrane on top with paper underneath

Part II: Experiment Modification b. Set-Up [Solving Hydrocarbon Precipitation]

Hydrocarbon mixture precipitates when contacting with water

- □ Precipitation clogs tubing, which builds up high pressure (>500 psi)
- Adapt a new reservoir with piston to separate hydrocarbon mixture and water from pump

b. Set-Up [Schematic]

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

c. Measurement Refinement [GC Parameter Optimization]

c. Measurement Refinement [GC Results Reproducibility]

Light Component: Acetone

Before Filtration				
Sample A		ESTD Mole%	Norm Mole%	
Rep-1	Light: Acetone	101.07	94.599	
	Heavy: Styrene	5.771	5.401	
Rep-2	Light: Acetone	101.478	94.591	
	Heavy: Styrene	5.803	5.409	
Rep-3	Light: Acetone	94.445	94.445	
	Heavy: Styrene	5.555	5.555	
Rep-4	Light: Acetone	103.491	94.601	
	Heavy: Styrene	5.906	5.399	
Rep-5	Light: Acetone	108.534	94.607	
	Heavy: Styrene	6.187	5.393	
Average	Light: Acetone	101.804	94.569	
	Heavy: Styrene	5.844	5.431	
Std Dev	Light: Acetone	5.0729	0.0693	
	Heavy: Styrene	0.2302	0.0693	
95% Confidence Interval	Light: Acetone	5.8441	0.0799	
	Heavy: Styrene	0.2652	0.0799	

Heavy Component: Styrene

Post Filtration				
Sample B		ESTD Mole%	Norm Mole%	
Rep-1	Light: Acetone	89.416	94.923	
	Heavy: Styrene	4.783	5.077	
Rep-2	Light: Acetone	92.602	94.916	
	Heavy: Styrene	4.96	5.084	
Rep-3	Light: Acetone	92.743	94.912	
	Heavy: Styrene	4.972	5.088	
Rep-4	Light: Acetone	87.721	94.912	
	Heavy: Styrene	4.702	5.088	
Rep-5	Light: Acetone	89.764	94.901	
	Heavy: Styrene	4.823	5.099	
Average	Light: Acetone	90.449	94.913	
	Heavy: Styrene	4.848	5.087	
Std Dev	Light: Acetone	2.1723	0.0080	
	Heavy: Styrene	0.1163	0.0080	
95% Confidence Interval	Light: Acetone	2.5026	0.0092	
	Heavy: Styrene	0.1340	0.0092	

Improvement: standard deviation reduces by half from ~0.15% to ~0.08% !

Part III Results Discussion

a. Example of GC Results [Before and Post Filtration]

Light Component: Acetone (Normalized)

Heavy Component: DP-Styrene

b. Filtration Efficiency vs. Molecular Weight

Duramem 150 Da under ~200 psi

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

c. Filtration Efficiency vs. Membrane Pore Size

Various Duramem with DP-Styrene (288 Da) under ~200 psi

MEMBRANE MWCO RATING [ESTIMATED PORE SIZE (NM)]

d. Filtration Efficiency vs. Injecting Pressure

INJECTING PRESSURE (PSI)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

e. Filtration Efficiency vs. Time

Duramem 200 Da with Styrene (104 Da)

SAMPLE # [TIME INCREASE ->]

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

f. SEM Image of Membranes [Duramem 150 Da Supporting Side]

f. SEM Image of Membranes [Duramem 150 Da Working Side]

Brand New

Used

Part IV Conclusions

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Part IV: Conclusions

- Filtration of hydrocarbon through artificial membranes has been verified in the lab
 - Filtration efficiency (or rejection percentage) is proportional to hydrocarbon molecular weight and inverse proportional to membrane pore size (or MWCO rating)
 - Tests showed filtration of hydrocarbon whose molecular weight is lower than MWCO of membrane, i.e. the kinetic diameter of molecules is smaller than the membrane pore size
 - The filtration efficiency decreases with time
 - Filtration efficiency decreases with increase pressure

Part V Future Work

Part V: Future Work

- Set-Up Modification
 - Design a device to collect effluent samples easily at different time
- Additional Measurement Data
 - Effluent pressure measurement
- New Chemicals
 - Branched vs linear chain heavy hydrocarbons
- Experimental Condition
 - Change of temperature
- More testing of?

Questions and Suggestions?

