

#### Measurement of Slip Flows in Nanofluidics & Rocks

# Ye Tian, Xiangyu Yu, Yu-Shu Wu and Xiaolong Yin yetian@mines.edu



# Outline

- Background
- Experimental set up
- Results & Discussions
- Conclusions



- Key parameters affecting gas flow regimes
- Knudsen number

Kn =

$$\lambda = \frac{\mu}{p} \sqrt{\frac{\pi RT}{2M}} \quad \text{or} \quad \lambda = \frac{k_B T}{\sqrt{2\pi d^2}}$$
Characteristic length (Pore size r)

Collisionless Pore size distribution in Barnett Boltzmann Kinetic Equation Boltzmann Equation 12 Euler Equations 10 Fraction (%) Navier-Stokes-Fourier Equations 8 106 °F, 3109 psia No Velocity Slip Velocity Slip and Temperature Jump 6 and No  $\lambda_{\rm CH_4} = 0.46 nm$ 2<sup>nd</sup> Order Temperature Jump 1<sup>st</sup>Order Extended Hydrodynamics Equations 2 0L 10 20 30 40 50 d (nm) 0.001Kn→∝ 1000.01Kn 0.110Free Molecular Hydrodynamics Transition Sakhee-Pour & Bryant, 2012; Wang, 2014 Slip Flow Regime Regime Regime Flow Regime

Ŋ

- Slip flow model
  - ➢ 1<sup>st</sup> order model (Kn<0.03)</p>

$$u_{s} = \frac{1}{2} \left[ u_{s} + \lambda \frac{\partial u}{\partial y} + \sigma u_{w} + (1 - \sigma) \left( u_{s} + \lambda \frac{\partial u}{\partial y} \right) \right] \Longrightarrow u_{s} - u_{w} = \frac{2 - \sigma}{\sigma} \lambda \frac{\partial u}{\partial n}$$

> 2<sup>nd</sup> order model (Kn<0.2)

$$u_{s} - u_{w} = c_{1}\lambda\left(\frac{\partial u}{\partial n}\right) - c_{2}\lambda^{2}\left(\frac{\partial^{2} u}{\partial n^{2}}\right)$$

 $\sigma$  is the fraction of molecules that reflects diffusely or Tangential Momentum Accommodation Coefficient (TMAC)





- Klinkenberg effect
- > observed k=F(1/p)
- converge to liquid k at high p

$$\frac{k_a}{k_{\infty}} = \frac{Q}{\lim_{K_n \to 0} Q} = 1 + \frac{b}{\overline{p}}$$

$$\frac{Q}{\lim_{K_{n\to 0}}Q} = 1 + CKn \frac{2-\sigma}{\sigma}$$

From 1<sup>st</sup> Oder slip model



b is not p-dependent for 1<sup>st</sup> order slip model.

b is a function of p for  $2^{nd}$  order slip model.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

• Slip flow model and Modified Darcy's law

$$b = C \frac{2 - \sigma}{\sigma} \frac{\mu}{r} \sqrt{\frac{\pi RT}{2M}}$$

C is a function of geometry C=4 for tubular flow; i.e. Pore-throat C=6 for planar flow; i.e. fractures (Wang, 2014)

Gas flow model is critical for reservoir evaluation/simulation.

But can we use 1<sup>st</sup> order slip model to modify Darcy's law?

When should we switch to 2<sup>nd</sup> order slip model?



# Experimental set up

• Gas flow in rocks



- 1. Pre-stressed for 2-3 days with 25% higher than expected effective stress
- 2. Gas injection with constant inlet pressure and controlled back pressure
- 3. Steady-state measurement



#### **UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT**

#### **Experimental set up**

Nanofluidics



**UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT** 

# Experimental set up

#### Gas flow in nanofluidics



- 1. Leakage test for 2-3 days
- 2. Gas flow with controlled inlet and back pressure
- 3. Steady-state measurement



#### **UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT**

#### **Results & Discussions**





 $b = C \frac{2 - \sigma}{\sigma} \frac{\mu}{r}$  $\pi RT$ 

- Increasing Molecular weight should reduce slip factor.
- Carbonate
   b<sub>N2</sub><b<sub>CH4.</sub> But for
   shale b<sub>N2</sub>>b<sub>CH4</sub>

Adsorption may reduce actual pore size for shale.

|           | Formation | Intrinsic<br>permeability        | slip factor                       | Correlated pore size        |
|-----------|-----------|----------------------------------|-----------------------------------|-----------------------------|
| Shale     | Niobrara  | 0.124 μD (CH4)<br>0. 152 μD (N2) | 355.9 psi (CH4)<br>532.7 psi (N2) | 18 nm (N2)<br>27 nm(CH4)    |
| Carbonate | Wisconsin | 17.6 μD (CH4)<br>16.3 μD (N2)    | 38.9 psi (CH4)<br>35.1 psi (N2)   | 273 nm (N2)<br>246 nm (CH4) |

#### **Results & Discussions**

• Gas flow in nanofluidics

Nanofluidics

500 nm

284 nm



3.47 mD

18.01 psi

0.95

#### **Results & Discussions**

• Gas flow in nanoporous media



Inverse scaling
 Validates 1<sup>st</sup> order
 Slip model in rock

Rocks have less slip than nanofluidic perhaps due to surface roughness and pore tortuosity



#### Summary ullet

Different slippage factor of methane and nitrogen reflect:

- Interactions between pore wall and different gases;
- $\succ$  Adsorption effect in the pore;

In nanofluidics, data from one chip within 1<sup>st</sup> order slip.

- $\succ$  TMAC for methane is 0.95, consistent with literatures
- > To validate TMAC by measuring gas flows in other depths

i.e. 100 nm and 50 nm in the future



#### Conclusions

- The inverse scaling model shows that 1<sup>st</sup> order slip model can fundamentally cover slip flows in both rocks and nanofluidics.
- The slip factor is mainly controlled via pore size and gas properties.
- The Klinkenberg factors obtained from nanofluidic experiments indicated that rocks may have less slip than nanofluidic channels of the same dimension, due to surface roughness, pore tortuosity and adsorption



Many thanks to our sponsor Halliburton Thanks for your attention.

All questions are welcome!

#### References

Arkilic, E.B., Schmidt, M.A. and Breuer, K.S., 1997. Gaseous slip flow in long microchannels. *Journal of Microelectromechanical systems*, 6(2), pp.167-178. Beskok, A. and Karniadakis, G.E., 1999. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. *Microscale Thermophysical Engineering*, 3(1), pp.43-77. Colin, S., Lalonde, P. and Caen, R., 2004. Validation of a second-order slip flow model in rectangular microchannels. *Heat transfer engineering*, 25(3), pp.23-30. CHeller, R., Vermylen, J. and Zoback, M., 2014. Experimental investigation of matrix permeability of gas shales. AAPG bulletin, 98(5), pp.975-995. Niu, C., Hao, Y.Z., Li, D. and Lu, D., 2014. Second-order gas-permeability correlation of shale during slip flow. SPE Journal, 19(05), pp.786-792. Shen, Ching. Rarefied gas dynamics: fundamentals, simulations and micro flows. Springer Science & Business Media, 2006. Sakhaee-Pour, A. and Bryant, S., 2012. Gas permeability of shale. SPE Reservoir Evaluation & Engineering, 15(04), pp.401-409. Wang, L., 2014. Simulation of slip flow and phase change in nanopores (Doctoral dissertation, Colorado School of Mines. Arthur Lakes Library) Wang, S., Lukyanov, A., Wang, L., Wu, Y.S., Pomerantz, A., Xu, W., Kleinberg, R., 2017. A Non-Empirical Gas Slippage Model for Low to Moderate Knudsen Numbers. Physics of Fluids, 29(1). Zhang, W.M., Meng, G. and Wei, X., 2012. A review on slip models for gas microflows. Microfluidics and nanofluidics, 13(6), pp.845-882.

