

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

Research Progress Report

Hydrocarbon Filtration in Nanoporous Materials

Advisor: Dr. Ozkan and Dr. Zerpa Presenter: Zhijun (Julian) Liu

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Part I: Recap
- Part II: New Development
- Part III: Conclusions
- Part IV: Future Work

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Part I Recap

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Background

- What is filtration effect?
- Why do we study it?
- What is my approach?
 - Using artificial membranes and hydrocarbon fluids
 - Simplify factors influencing the filtration process
 - Faster turnaround time of testing results
 - Interdisciplinary knowledge available

Set-Up

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Membranes & Fluids

- Membranes
 - Puramem Series
 - 280 Da (~1.1nm) and 600 Da (~1.4nm)
 - Compatible fluid: Toluene
 - Duramem Series
 - 150 Da, 200 Da, 300 Da, 600 Da and 900 Da (Pore size: ~0.75-4.5nm)
 - Compatible fluid: Acetone

Heavy Hydrocarbons

Results: Before and Post Filtration

Light Component: Acetone (Normalized)

Heavy Component: DP-Styrene

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency Calculation

FE - Filtration Efficiency C_A - Concentration of Sample A, before filtration C_x - Concentration of Sample B, C, D ..., after filtration

Results: FE vs. Membrane Pore Size

Various Duramem with DP-Styrene (288 Da) under ~200 psi

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Results: FE vs. Injecting Pressure

INJECTING PRESSURE (PSI)

Duramem 150 Da with DP-Styrene (288 Da)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Part II New Development

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Membranes & Fluids

- Fluids
 - Polystyrene in acetone/toluene
 - → New: Crude oil in toluene
- Membranes
 - Puramem Series
 - 280 Da (~1.1nm) and 600 Da (~1.4nm)
 - Compatible fluid: Toluene
 - Duramem Series (not used)
 - 150 Da, 200 Da, 300 Da, 600 Da and 900 Da (Pore size: ~0.75-4.5nm)
 - Compatible fluid: Acetone

Set Up Additions

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

GC/MS Mechanism

Source: https://orgspectroscopyint.blogspot.com/2014/11/gas-chromatography-mass-spectrometry-gc.html

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

GC/MS Plots

Counts vs. Time (minutes)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Predominant Hydrocarbons of Eagle Ford Crude

Peak No.	Formula Abbr.	Chemical Name	Retention Time (mins)	Molecular Weight (g/mol)	
1	C8H10	Xylene	6.68	106	
2	n-C9	Nonane	7.49	128	
3	n-C10	Decane	10.66	142	
4	n-C11	Undecane	13.91	156	
5	n-C12	Dodecane	16.99	170	
6	n-C13	Tridecane	19.88	184	
7	n-C14	Tetradecane	22.57	198	
8	n-C15	Pentadecane	25.11	212	
9	n-C16	Hexadecane	27.51	226	
10	n-C17	Heptadecane	29.78	240	
11	n-C18	Octadecane	31.93	254	
12	n-C19	Nanodecane	34.05	268	
13	n-C20	Eicosane	36.64	282	
14	n-C21	Heneicosane	40.09	296	
15	n-C22	Docosane	44.84	310	
16	n-C23	Tricosane	51.50	324	

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Peak Contamination

Counts vs. Time (minutes)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Selected Hydrocarbons For Analysis

Peak No.	Formula Abbr.	Chemical Name	Retention Time (mins)	Molecular Weight (g/mol)	
1	C8H10	Xylene	6.68	106	
2	n-C9	Nonane	7.49	128	
3	n-C10	Decane	10.66	142	Removed
4	n-C11	Undecane	13.91	156	
5	n-C12	Dodecane	16.99	170	
6	n-C13	Tridecane	19.88	184	
7	n-C14	Tetradecane	22.57	198	
8	n-C15	Pentadecane	25.11	212	
9	n-C16	Hexadecane	27.51	226	
10	n-C17	Heptadecane	29.78	240	Removed
11	n-C18	Octadecane	31.93	254	
12	n-C19	Nanodecane	34.05	268	
13	n-C20	Eicosane	36.64	282	
14	n-C21	Heneicosane	40.09	296	
15	n-C22	Docosane	44.84	310	
16	n-C23	Tricosane	51.50	324	

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Raw Peak Area

Hydrocarbon Components

Peak Area -Before (Sample A) and After Filtration (Sample B-D)

Hydrocarbon Components

Normalized Peak Area (Reference: n-C9)

Hydrocarbon Components

Pseudo Concentration Calculation

PC - Pseudo Concentration, m-mol/g A_{n-Cx} - Peak Area of n-Cx A_{n-C9} - Peak Area of n-C9 MW_{n-Cx} - Molecular weight of n-Cx

Pseudo Concentration -Before (Sample A) and After Filtration (Sample B-D)

Hydrocarbon Components

Filtration Efficiency Calculation

$$FE^{i} = 1 - \frac{PC_{x}^{i}}{PC_{A}^{i}}$$

FEⁱ - Filtration Efficiency of component i PC_A^i - Pseudo Concentration of component i in Sample A (before filtration) Pc_x^i - Pseudo Concentration of component i in Sample B, C or D (after filtration)

Filtration Efficiency in Column

Hydrocarbon Components

Filtration Efficiency in Scatter Chart

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Summary of Tests

Test NO.	Membrane & Fluid	Injection Pressure (psi)	CO2 Treatment Pressure (psi)	Comments
S 34	Puramem 280 Da, ~ 5 vol% Eagle Ford crude oil in toluene	250	N/A	Stopped pump after collecting 1st sample, 2nd sample collected < 100 psi)
S35		250	N/A	Reference Test
S36		100	N/A	
S37		250	600	Treated fluid with CO2 under ~600 psi for 24 hours
<i>538</i>		250	600	Treated fluid with CO2 under ~600 psi for 24 hours, additional shaking
S 39		250	250	Treated fluid with CO2 under ~250 psi for 24 hours

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency (S34)

Filtration Efficiency (\$35 – Reference Test)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency (S35 vs S34)

Filtration Efficiency (\$36: Lower Injection Pressure)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency: Pressure Effect

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency (S37: Treated w/ CO2 at 600psi)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency (\$38: Treated w/ CO2 at 600psi)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency: CO2 Effect

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency (\$39: Treated w/ CO2 at 250psi)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Efficiency: CO2 Effect

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Part III Conclusions

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Conclusions

- Heavier components in crude oil have higher filtration efficiency than lighter components
- Lower pressure drop across the membranes leads to lower filtration efficiency
- CO2 may have reduced filtration efficiency if dissolved in the pre-filtration mixture
 - It seems higher pressure, e.g. 600 psi, is needed to dissolve CO2 effectively into toluene/crude oil mixture to reduce filtration efficiency

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Part IV Future Work

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Investigate the below parameters further about their effect on filtration efficiency of crude oil
 - Pressure
 - *CO2*
 - Temperature
 - Other factors?

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT