

Discussion of Filtration Experiments in Niobrara Samples

Ziming Zhu Ph.D. Petroleum Engineering Colorado School of Mines

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Problem Statement

Pore sizes of Niobrara samples are in nano range

Pore/throat $\xleftarrow{Same \ order \ of \ magnitude}{}$ Hydrocarbon molecule

Nanoporous material can act as a semi-permeable membrane

Light components can pass through

Heavy components may be completely or partially filtered

Objective

- Explore the membrane property of Niobrara sample
- Investigate factors controlling the membrane effect of Niobrara sample
 Pressure Adsorption (rock/fluid interaction)
 Temperature Diffusion
 Migration distance (sample length) ...
 - Hydrocarbon molecular size

. . .

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

In-Line Filter

Pressure: 0-2500 psig Temperature: -20 °F to 100 °F

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara Sample

0.5 in -

0.8 in

Seal ability Test

Epoxy is hydrocarbon proof No leakage under experimental condition,

• $nC_6 + nC_{10}$ injection

injected fluid: Equal-volume mixture of nC_6 and nC_{10} 60% nC_6 40% nC_{10} (mole fraction) produced fluid: 35% nC_6 65% nC_{10} 1% other

• $nC_7 + nC_{10}$ injection

injected fluid: Equal-volume mixture of nC_7 and nC_{10} 57.09% nC_7 42.91% nC_{10} (mole fraction) produced fluid: 45% nC_7 54% nC_{10} 1% other

 Possible reason of the decrease of nC₇ in the produced fluid – preferential adsorption.

Henry adsorption constants of $C_1 - C_{14}$ n-alkanes on SAPO-34 (zeolite) (Denayer et al, 2008)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Possible reason of the decrease of nC₇ in the produced fluid.
 - Preferential adsorption depends on 1) chemical nature of the adsorbent/adsorbate 2) relative size between n-alkanes and pore/throat
 - Zeolite: silicon-rich mineral
 e.g. Na[AlSi₂O₆]·H₂O Ca[Al₂Si₃O₁₀]·3H₂O
 Å ~ nanometer pore/throat
 - Niobrara sample: calcite-rich moderate silicate (clay, quartz)
 Å ~ nanometer pore/throat

Niobrara mineralogy ternary plot (Saidian et al 2016)

Conclusion

- Filtration experiments were conducted using n-alkane mixtures
- Heavy component (nC₁₀) was found to be increased in the produced fluid.
- Preferential adsorption of shorter n-alkanes (nC₆/nC₇) over longer ones (nC₁₀) in the Niobrara sample may account for the observed result.
- Influence from adsorption should be considered in the future work
- Subsequent experimental data needed to help investigate the membrane property of Niobrara sample.

Thank You Questions?

