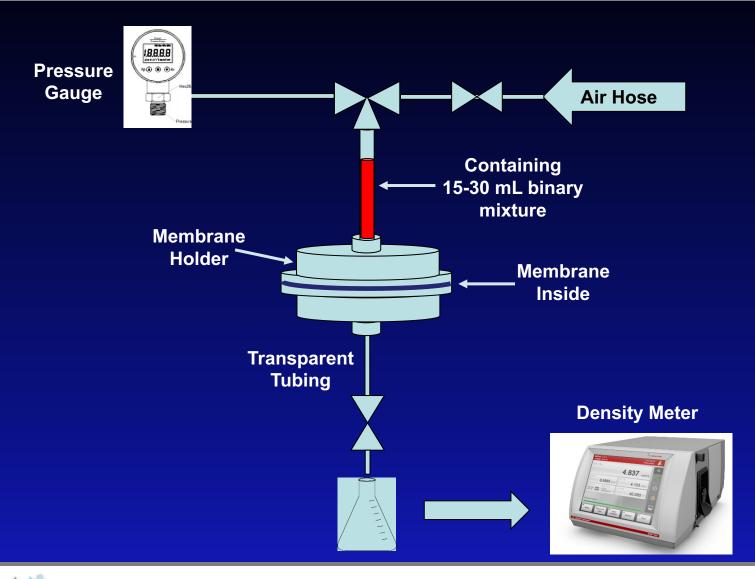


Research Summary

EXPERIMENTAL STUDY OF HYDROCARBON FILTRATION

Zhijun (Julian) Liu


UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, May 5, 2017, Golden, Colorado

Background

- Motivation
 - Compositional differences have been observed between hydrocarbons produced on surface and hydrocarbons in the reservoir
 - The micron to nanometer scale of shale pore size leads us to suspect the filtration of hydrocarbon by shale rock during the production
- Strategy
 - Verify filtration effect through shale 'core flood' (Z.Zhu)
 - Study filtration mechanism through artificial membrane
 Simplified and controlled experimental parameters

Schematic of Experimental Set-Up

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, May 5, 2017, Golden, Colorado

Filtration Spectrum

Micrometers	ST Microscope	Scanning Ele	ctron Micro		
(Log Scale)	Ionic Range	Molecular Range	Macro Mo		
	0.001	0.01	0.1		
Angstrom Units (Log Scale)	2 3 5 8 Menubrano 2	<i>≥₀ 3₀ 5₀ 8₀ 100 <i>≥</i>₀ 3 </i>	20 500 800 100		
Approx. Molecular Wt. Jaccharide-Type No. Scale)	100 200	1000 10,000 20,000	100,000		
			Albumin Protein		
	86 queous S	310 Carl	Carbon Black		
	Ato C10H22 Ra 142	Endotoxin/Pyroge	n		
	C ₁₂ H ₂₆ Sug	gar Vir	us		
Relative	<u>Mo</u> 170	*from Sterlite	ch Tobacci		
	AL RESERVOIR ENGINEERING	PROJECT	1		

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 5, 2017, Golden, Colorado

Experimental Results

Membrane Properties				Experimental Condition and Results							
Pore Size	Material	Max Temp (C)	Max Puressure (psi)	Liquid Entry Pressure (psi)	Mixture (Alkane)	Operating Temp (C)	Operating Pressure (psi)	Density (g/mL)		Density Difference	
								Influent	Effluent	Absolute	Percentage
		400		40		0.07	75	0.000.45		0.00400	0.000.40/
0.02 micron	PEEK	180	N/A	43	nC6/nC10	@RT	~75	0.69045	0.69231	0.00186	0.2694%
0.02 micron	PEEK	180	N/A	43	nC6/nC10	@RT	~75	0.69413	0.69446	0.00033	0.0475%
0.02 micron	PEEK	180	N/A	43	nC6/n <mark>C12</mark>	@RT	~50	0.70410	0.70554	0.00144	0.2045%
280 Dalton (1.4 nm)	PURAMEM	50	290-870	N/A	nC6/n <mark>C22</mark>	@50 C	~75	0.69844	0.70338	0.00494	0.7073%
280 Dalton (1.4 nm)	PURAMEM	50	290-870	N/A	nC6/n <mark>C12</mark>	@RT	~45	0.70218	0.70574	0.00357	0.5077%

• No filtration was achieved:

- Instead, density of mixture increases after flowing through membrane
- Cause: evaporation of light component (C6)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, May 5, 2017, Golden, Colorado

Investigation of Potential Issues and Solutions

- Pore expansion/deformation due to pressure
 - Plan: compare the before/after-test image of membrane with ESEM/FESEM
 - **Plan:** stack membranes to strength pore structure
 - Plan: control and measure upstream/downstream
 pressure precisely with pump and proper gauges
 - Low pressure and slow flow rate
- Density measurement is not sufficiently precise to distinguish the mixture difference
 - Plan: use Gas Chromatography (GC)
- Membrane pore size is different than reported
 - Plan: characterize pore size distribution through absorption (collaboration with another research group)

Thank You!

Questions and Suggestions?