

Status of UREP Research Tasks

PHASE BEHAVIOR IN NANOPOROUS MEDIA

Xiaolong Yin, Petroleum Engineering, Colorado School of Mines

UREP research tasks on phase behavior

Fransport of Hydrocarbon Fluids in Reservoirs PROJEC⁻ Nano-Porous Flow and

Phase 3 Tasks

- 1. Understand trends in field data
- 2. Dew-point measurements in nanofluidic chips and comparison with models
- 3. Effect of temperature on experiments
- 4. Core measurements
- 5. Upscaling experimental results

6. Molecular simulations

Tucge Calisgan (PhD) PVT study of field data

Kaia Corp. Non-intrusive optical measurement of pressure

Asm Kamrruzaman (PhD) Modeling phase behavior with capillary pressure

Keerthana Krishnan (MS) Capillary condensation in nanosililca

Research tasks on phase behavior (T2 & T3)

T2 – Sponsored by DOE STTR – Kaia Corp.

Phase behavior of C₃ in nanofluidics
Comparison with Kelvin equation (had difficulties in matching)
Measure pressure change in the vicinity of phase change

T3 – Asm Kamrruzaman

Repeat previous C₃ experiments
Design pressure / temperature enclosures
Conduct nanofluidic experiments at different temperatures
Experiments with mixtures and compare with model

Green = Completed; Yellow = Current; White = Planned

Research tasks on phase behavior (T4)

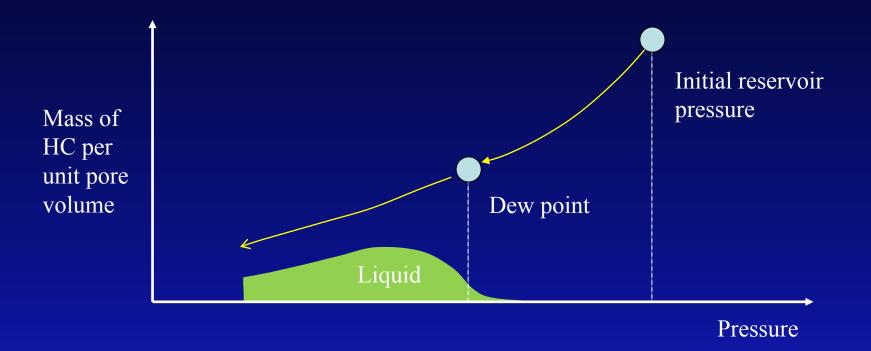
T4 – Keerthana Krishnan

Capillary condensation of C₃ in Niobrara

Capillary condensation of C₃ in synthetic nanopores

Other rocks

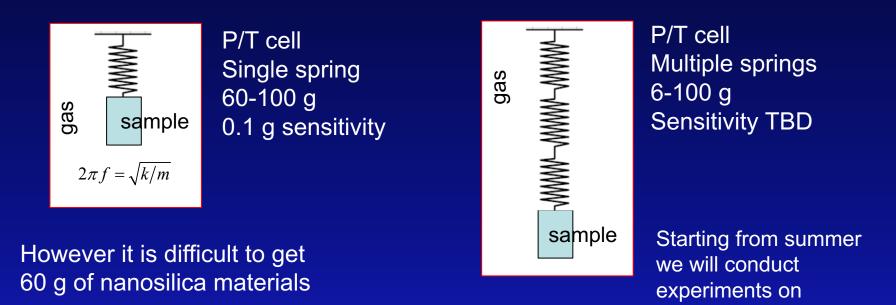
- Other gas or gas mixtures
- Effect of water
- Effect of crushing


Compare with upscaled models (T5 – core level)

Research tasks on phase behavior (T4)

Plan for T4

Experimentation and model for HC in place that accounts for the effect of capillary condensation for condensate reservoirs


Research tasks on phase behavior (T4)

Main progress for T4

Original design in Larson et al. (2017) and Cho et al. (2017)

Options

- Using a flexible beam
- Using multiple springs

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, May 4, 2018, Golden, Colorado nanosilica materials

Research tasks on phase behavior (T5)

T5

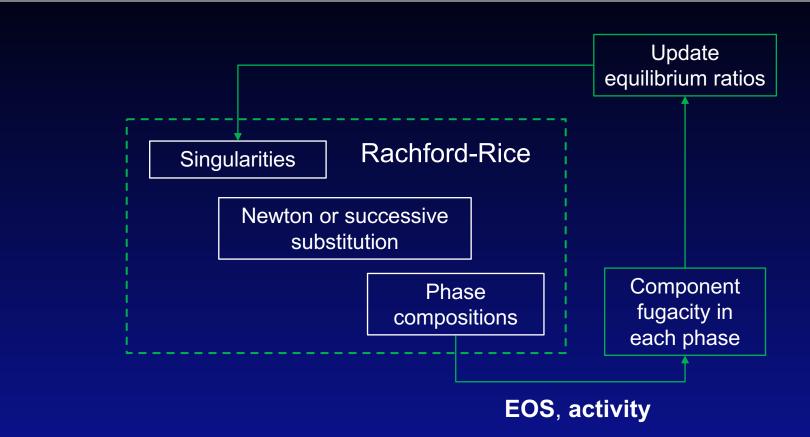
Vapor-liquid phase behavior in a <u>single pore</u>

Vapor-liquid phase behavior in <u>multiple pores</u> (pore size distribution)

General multi-phase (≥ 3) equilibrium

- Model constructed and validated using data from literature
- CO₂-oil-water and C₂-oil-water phase behavior measured
- Writing papers ...

Vapor-liquid-adsorption phase behavior


Upscale to the <u>core</u> level, considering equilibrium among pores of different sizes but no variation in pressure and temperature

Coz-Sim

Upscale to the <u>reservoir</u> level, considering pressure variations due to flow, and explain and predict field data (T1)

Flow chart of 3-phase calculations

Work completed

- EOS and activity models have been implemented
- Gas-oil phase behavior with water can now be done

(Example) result of 3-phase calculations

Component	Composition (%)			
C1	30			
nC_5	15			
nC_{10}	25			
CO_2	10			
H_2S	10			
H ₂ O	10			

- Peng-Robinson EOS for oil and gas phases
- Henry's law for aqueous phase
- Results are in good agreement with Li and Nghiem (1986)

	This study			Li and Nghiem (1986)			Two-phase	
-	x^{l} %	x ^g %	<i>x</i> ^{<i>w</i>} %	x^{l} %	x ^g %	x ^w %	x^{l} %	x ^g %
C_1	22.868	65.174	0.001	22.884	65.220	0.001	23.286	66.365
nC ₅	21.676	4.936	0	20.216	4.603	0	20.585	4.687
nC_{10}	35.919	0.663	0	35.889	0.662	0	35.959	0.664
CO_2	9.145	16.873	0.020	9.148	16.879	0.021	9.239	17.047
H_2S	10.906	11.220	0.141	10.906	11.219	0.141	10.929	11.243
H_2O	0.958	1.416	99.773	0.958	1.417	99.839	/	/
	\tilde{n}^{l}	ñ ^g	ñ"	\tilde{n}^{l}	ñ ^g	\tilde{n}^{w}	\tilde{n}^l	ñ ^g
	69.20	21.75	9.05	69.26	21.70	9.04	77.45	22.55

T6 – progressing

Characterize bulk phase behavior of a pure substance Characterize confined phase behavior of a pure substance Characterize confined phase behavior of mixtures Compare with model (T5 - pore) and experiments (T2 and T3)

T1

Field data acquired and being analyzed Use Coz-Sim to simulate field cases and compare (T5 – reservoir)

Green = Completed; Yellow = Current; White = Planned

Phase behavior in nanopores – integration

- Molecular simulations
 - Molecular scale
- T6 Inter-molecular interactions
 - Fluid property models
 Density correlations
 Phase transitions
- T5 Equilibrium across many pores
 - Reservoir engineering tools
 Reserve estimation
 Understand decline
 Reservoir simulation
 T1

- Nanofluidic experiments
 Pore scale
 Direct observations T2, T3
- Core experiments Verification of predictions

T4

