

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Research Proposal

Nanoscale Flow and Transport: Pore-scale Experiments and Numerical Simulations

Xiaolong Yin, Colorado School of Mines

Challenges on the Nano-Scale

Fundamental laws for storage and transport are challenged

Conventional

- Storage pore volume + phase behavior = Gas/Oil in Place
- Transport pressure driven + Stokes flow = Darcy's law

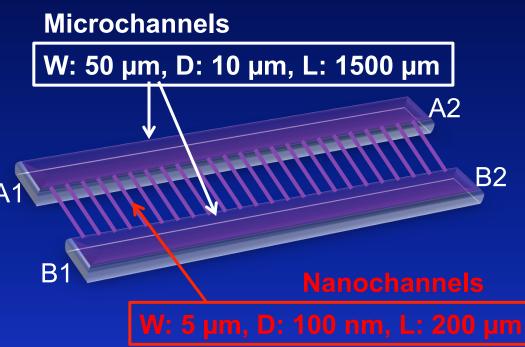
Unconventional

- Storage pore volume + surface adsorption
- Storage surface-fluid interaction modifies fluid properties and phase behavior
- Transport non-continuum effect (slip)
- Transport other mechanisms (diffusion)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

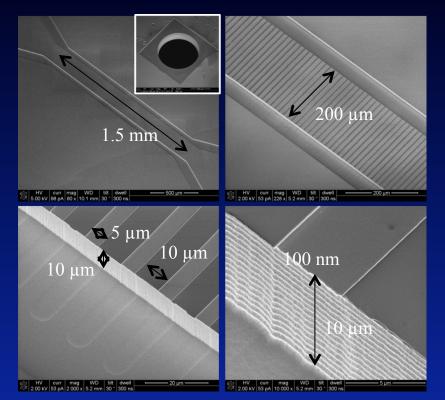
Objectives

- Make (direct) observations and measurements
- Provide numerical and experimental data needed for the development of constitutive relations


Approach

- Phase behavior and flow experiments in controlled environments (e.g. nanofluidics)
- Use direct observations to verify / calibrate indirect measurements
- Use numerical simulations to isolate the mechanisms and to provide model parameters

Experiments


- Nanofluidic models are fabricated using silicon and pyrex – direct observation is possible
- The channel depth can be made to 30nm
- A1, A2, B1, B2 are connected to fluid injection / production ports

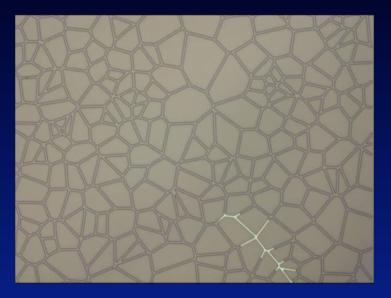
UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

SEM Image and Air-Water Drainage

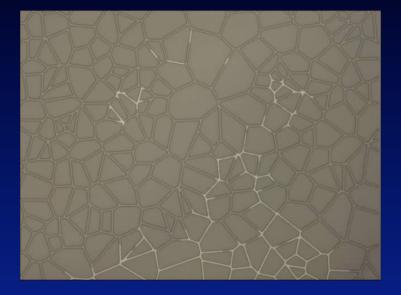
Nanochannels arranged in parallel

Pressure difference = 135 psia Threshold pressure = **120 psia** Above threshold pressure, saturation decreases with increasing pressure difference

Water



UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT


5

Air

Nano-Networks and Evaporation

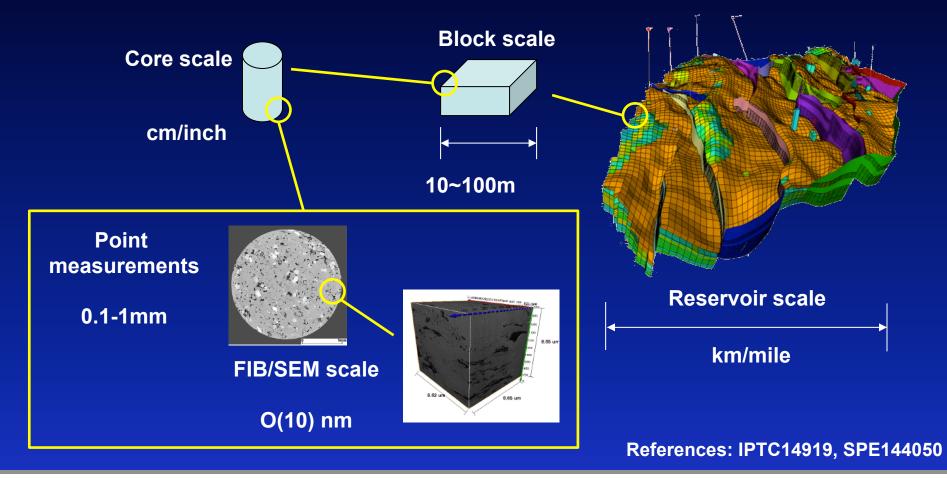
IPA (isopropyl alcohol) evaporation in 300nm deep channels (5x)

IPA (isopropyl alcohol) evaporation in 30nm deep channels (2x)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Phase behavior
 - Multi-component lattice Boltzmann method
- Mobility of single- and multi-phase fluids
 - Kn < 0.001 Lattice Boltzmann method
 - 0.001 < Kn < 0.1 Lattice Boltzmann method w/ slip
 - 0.1 < Kn Direct simulation Monte Carlo
 - Validate the physics
 - Extract constitutive relations
 - Simulate relevant processes in real geometries

Plan


Topics	Data to be Obtained
Phase Behavior	 Multicomponent hydrocarbon mixture phase boundaries Effect of surface properties Effect of pore size distributions
Single-phase transport	 Apparent permeability of hydrocarbon liquids and gases as a function of confinement and surface properties Confirmation and characterization of osmotic effects (size dependent transport)
Multiphase transport	 Visualization of water-oil displacement on the nanoscale Effect of additives and chemistry on water-oil displacement efficiency Gas-EOR

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Attack the Problem of Scales

 (Verified) simulations can directly upscale nm-scale phenomena to µm/mm-scale effective properties

Acknowledgements

Current students / postdoc

Feng Xiao (PhD): Lattice Boltzmann simulation Lei Wang (PhD): Lattice Boltzmann and DSMC Yuefeng Gao (MS): Micro and nanofluidics (co-advise) Dr. Jeong Tae Ok: Micro and nanofluidics (co-advise) Debo Gao (PhD): CO₂-EOR modeling (co-advise) Ronglei Zhang (PhD): CO₂ geochemical reactions (co-advise) Bowen Yao (MS): Cryogenic fracturing (co-advise)

Collaborators

EMG, MCERS, FAST, UNGI, UREP Keith B. Neeves (ChemE CSM), Baojun Bai (PE MUST) Qinjun Kang (LANL)

Support

DOE NETL, NSF, ACS PRF, RPSEA, UNGI

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT