

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

CSN

Summary and Background

PHASE BEHAVIOR IN NANOPOROUS MEDIA

- UREP Research Tasks on Phase Behavior
- List of Presentations
- Plan for Integration

UREP research tasks on phase behavior

Fransport of Hydrocarbon Fluids in Reservoirs PROJEC⁻ Nano-Porous Flow and

Phase 3 Tasks

- 1. Understand trends in field data
- 2. Dew-point measurements in nanofluidic chips and comparison with models
- 3. Effect of temperature on experiments
- 4. Core measurements
- 5. Upscaling experimental results
- 6. Molecular simulations

In the process of receiving field data

- PVT in a chip

Capillary condensation in Niobrara

Three-phase equilibrium models

Molecular simulation of phase behavior

Phase behavior related presentations

- Younki Cho (PhD) Vibrational gravimetric analysis of capillary condensation (T4)
- Asm Kamruzzaman (PhD) Pore size distribution in Niobrara
- Ran Gao (visiting student) Three-phase equilibrium calculations (T5)
- Kaia corporation PVT-on-a-chip (**T2 & T3**)
- Yakup Coskuner (MS) Molecular simulations (**T6**)

Research tasks on phase behavior (T2, T3)

T2

Phase behavior of nC₃ in nanofluidics
Comparison with Kelvin equation
Measure pressure change in the vicinity of phase change
Repeat experiments with mixtures and compare with model

T3

Design pressure / temperature enclosures Conduct nanofluidic experiments at different temperatures

Green = Completed; Yellow = Current; White = Planned

Research tasks on phase behavior (T4, T5)

T4

Design and validation

Capillary condensation of nC₃ in Niobrara

Other rocks; dew points of gas mixtures

Compare with upscaled models (T5 – core level)

T5

Vapor-liquid phase behavior in a single pore

Vapor-liquid phase behavior in multiple pores (pore size distribution)

Vapor-liquid-adsorption phase behavior

Upscale to the <u>core</u> level, considering equilibrium among pores of different sizes but no variation in pressure and temperature

Coz-Sim

Upscale to the <u>reservoir</u> level, considering pressure variations due to flow, and explain and predict field data (T1)

Research tasks on phase behavior (T6, T1)

T6

Characterize bulk phase behavior of a pure substance Characterize confined phase behavior of a pure substance Characterize confined phase behavior of mixtures Compare with model (T5 - pore) and experiments (T2 and T3)

T1

Aquire and analyze field data Use Coz-Sim to simulate field cases and compare (T5 – reservoir)

Green = Completed; Yellow = Current; White = Planned

Phase behavior in nanopores – integration

- Molecular simulations
 - Molecular scale
- T6 Inter-molecular interactions
 - Fluid property models
 Density correlations
 Phase transitions
- T5 Equilibrium across many pores
 - Reservoir engineering tools
 Reserve estimation
 Understand decline
 Reservoir simulation
 T1

- Nanofluidic experiments
 Pore scale
 Direct observations T2, T3
- Core experiments Verification of predictions

T4

