

#### **Research Summary**

#### VIBRATIONAL GRAVIMETRIC ANALYSIS OF CAPILLARY CONDENSATION IN POROUS SOLIDS

Younki Cho, Zachary Larson, Ryan Lo, Keerthana Krishnan Xiaolong Yin



# Objective

- Measure changes in the mass of a sample, due to adsorption and capillary condensation, in high-pressure, hightemperature environments
  - Develop and verify a method that determines mass by measuring the frequency of oscillation
  - Test the method on Berea sandstone and Niobrara shale
  - Use Kelvin equation and equation of state to determine pore size and volume in which condensation occurred



# How to measure gas-solid interactions?

• Manometric methods



- Gas # of moles spent is correlated to changes in PV
- Z factor needs to be considered when P is high

• Gravimetric methods



- Change in solid mass is correlated to change in force
- Buoyancy needs to be corrected



# **Current gravimetric methods for HPHT environments**

- Enclosing a microbalance into a pressure / temperature vessel [1, 2]
- Magnetic suspension balance [3]



Enclosed microbalance from [2]

- 1. Agrawal and Schwarz 1988, Carbon 26:873-887.
- 2. Benham and Ross 1989, Z. Phys. Chem. 163:25-32.
- 3. De Weireld, Frere and Jadot 1999, Meas. Sci. Technol. 10:117-126.



Magnetic suspension balance from [3]



# Vibrational gravimetric analysis



- Quartz-crystal microbalance [4]
  - µg-level sensitivity
  - Base frequency 10<sup>6</sup> Hz
- Vibrating-beam method [5]
  - Base frequency 200 Hz

- Change in solid mass is correlated to change in frequency of oscillation
- Dynamic process added mass and viscous damping need to be considered
- 4. Bonner and Cheng 1975, J. Polym. Sci. C 13:259-264.
- 5. Biscoe and Mahgereteh 1983, J. Phys. E 17:483-487.

Determine rate of gas-solid reactions



#### **Experimental design**





UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

### Calibration

• Measured frequency decreases with increasing pressure



$$m + m_a = \frac{k}{4\pi^2 f^2}$$

Added mass: Mass of gas coaccelerated with the solid during oscillation

Calibration Principle: Added mass  $\infty$  Density of gas  $\infty$  Pressure

#### Experiment carried out with N<sub>2</sub>



### Calibration – continued



Larson, Cho and Yin 2017, Meas. Sci. Technol., 28(6), 065902.

#### Experiment carried out with N<sub>2</sub>



#### Measured vs. actual masses after calibration



Propagation of error: 1.1 % accuracy

Most uncertainties actually came from the pressure gauge

New pressure gauge improved the accuracy to 0.5 %

Actual measurements: 0.25 – 0.35% error in average

Larson, Cho and Yin 2017, Meas. Sci. Technol., 28(6), 065902.

#### Experiment carried out with N<sub>2</sub>



**UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT** 

#### Effect of temperature



#### Sample Mass = 80.06 g

- T  $\uparrow$  k and f  $\downarrow$
- T↑ slope of the line is reduced because gas density is lower at higher temperature

#### Experiment carried out with N<sub>2</sub>



#### UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

# Summary of testing results

#### • Pros

Simple, inexpensive, and easy to operate
Accuracy ~ 0.25%

#### Cons

- Requires calibration
- Not sensitive on very low mass changes



# Summary of testing results

#### Berea sandstone

- Porosity = 19.7%
- Permeability = 175 mD
- 1.5 inch core plug
- Calibration constant = 0.0134 g/psi

#### • Niobrara shale

- Porosity = 5-8%
- Permeability =  $0.7-1.6 \mu D$
- 20/40 crushed sample
- Calibration constant = 0.0260 g/psi @ 70 °F

= 0.0260 g/psi @ 115 °F = 0.0266 g/psi @ 150 °F

#### • Gas = Propane

- P<sub>v0</sub> @ 70 °F = 124.92 psia
- P<sub>V0</sub> @ 115 °F = 228.17 psia
- P<sub>v0</sub> @ 150 °F = 343.74 psia



UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

# Calibration

#### Niobrara sample



- Added mass coefficient
  - 0.0260 g/psi @ 70 °F
  - 0.0260 g/psi @ 115 °F
  - 0.0266 g/psi @ 150 °F

#### Berea sample



Added mass coefficient
0.0134 g/psi



#### Berea sandstone: 70 °F

- Sandstone has large pores
  - Weight = 93.506 g (75.904 g + weight holder + magnet)
  - Low surface area results no detectable adsorption
  - There shouldn't be any capillary condensation
  - Compressed nitrogen in the pores @ 70 °F and 1500 psig = 1.174 g



- Trend in the frequency is dominated by added mass correction
- The mass of compressed nitrogen gas in the pore generated some influences on the frequency



# Berea sandstone: 70 °F – continued

Test with propane to observe condensation and added mass



- No condensation observed
- Mass of compressed propane gas is not noticeable
- Dense nitrogen gas in pores contributes to the measurement at higher pressure



#### UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

#### Niobrara shale: 70 °F to 150 °F Expectations and frequency data

- Niobrara shale is dominated by nanometer pores
  - Weight = 98.963 g (79.705 g + weight holder + magnet)
  - There should be some adsorption
  - There should be significant capillary condensation



- High-temperature data are noisier
   perhaps due to
   temperature
   fluctuations
- Frequencies are below added-mass corrections indicating additional mass to the sample



### Mass increase in Niobrara samples





### Capillary condensation – a background

 In confined space, equilibrium vapor pressure decreases as a function of pore size

$$P_{V} = P_{V0} \exp\left(-\frac{V_{L0}}{RT} \frac{2\sigma\cos\theta}{r}\right)$$

Kelvin equation (for cylindrical pore)

P<sub>v</sub>: Pressure of vapor in equilibrium with condensed liquid in a pore of radius r P<sub>v0</sub>: Vapor pressure – unconfined V<sub>L0</sub>: Liquid molar volume  $\sigma_0$ : Vapor-liquid interfacial tension





UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

#### Analysis – 70 °F data



Volume of liquid condensed in pores of radius r<sub>2</sub>

Pore size and pore volume that correspond to capillary condensation can be determined

#### Data processing





### Pores containing condensed fluid at 70 °F







UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

### Comparison with available Niobrara data



Permeability estimated from capillary condensation is comparable to the measurements from commercial lab.

# Pores with condensed fluid controls the permeability

Pore volume that contains condensed fluid is less than total pore volume.

Larger pores are still filled with gas



UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

# Summary

- We developed a new vibration-based gravimetric method to measure mass change at high-pressure and hightemperature conditions
- The accuracy is adequate (0.25%) to detect capillary condensation in shale
- Analysis using Kelvin equation gave reasonable results on pore size distribution; it will be good to verify the interpretation using other methods
- Permeability estimated from commercial lab agrees well with permeability from the capillary condensation; pores with condensed fluid controls the permeability





- Future work
  - Fit 115 °F and 150 °F data with Kelvin equation based model
  - Test other gases
  - Compare with other methods
  - Compare with molecular simulations







# **Backup slides**



#### Propane Pressure-molar volume at 70 °F from EOS



#### Niobrara shale: 70 °F to 150 °F Expectations and frequency data



