

Objectives

- Measure change in mass of a sample due to capillary condensation by monitoring the natural frequency of sample using oscilloscope
- Perform the measurement at high-pressure and high-temperature conditions
- Apply the method to:
 - Berea sandstone (macroporous)
 - Niobrara shale (crushed, macroporous and mesoporous)

IUPAC definitions:

- Micropore: Pore with width not exceeding about 2.0 nm
- **Macropore**: Pore with width exceeding about 0.05 μm (50nm)
- **Mesopore**: Pores of intermediate size between macropores and micropores. 2nm ≤ *mesopores* ≤ 50*nm*

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 3, 2017, Golden, Colorado

Calibration Methodology

Change in frequency is related to change in mass

$$f = \frac{1}{2\pi} * \sqrt{\left(\frac{k}{M_{Total}}\right)}$$

Where, $\Delta M_{Total} = \Delta M_a + \Delta M_p + \Delta M_{Adsorption+Condensation}$ Calibration is done following the two steps below:

1. Calibration for added mass (using a non porous mass of the same shape as the porous solid):

$$\Delta M_a = \alpha P$$

Where, $\alpha = added mass coefficient$ (unit: g/psi)

2. Calibration for pore gas(using Berea Sandstone):

$$\Delta M_p = (Pore \ Volume) * \frac{P}{zRT} * MW$$

Where, MW = Molecular weight $\Delta M_{Total} - \Delta M_a - \Delta M_p = \Delta M_{Adsorption+Condensation}$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 3, 2017, Golden, Colorado

5

A	Added mass coefficients								
	Temperature (°F)	Added Mass coefficients (g/psi) Niobrara							
	Gas: Propane								
	70	0.02605 ± 0.00170 0.02602 ± 0.00079 0.02658 ± 0.00014							
	115								
	150								
	Gas: Nitrogen								
	70	0.00841							
	Temperature (°F)	Added Mass coefficients (g/psi) Berea							
	Gas: Propane								
	70	0.01341							
	Gas: Nitrogen								
	70	0.00554							
	UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 3, 2017, Golden, Colorado								

Mesoporous Niobrara Shale

Gasses used:

Propane: A condensable gas at pressure and temperature of interest

Niobrara shale(Mesoporous solid): fresh from nearby quarry

- cleaned using Toluene and Methanol
- crushed to 20/40 mesh size
- Porosity = 44.5 %
- Permeability = 0.7-1.6 µD
- 20/40 crushed sample
- Mass = 98.963g

Sample was stored in oven before and after experiment

9

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 3, 2017, Golden, Colorado

Niobrara Shale- Frequency Vs Pressure 6.32 6.30 • 70 °F 6.30 ■ 115 °F ▲ 150 °F 6.30 6.25 . 6.25 . 6.20 6.28 **Example 1 Example 1 Examp Erequency** Hz 6.26 **Erequency**, Hz 6.15 6.10 ŧ 6.10 6.22 6.00 6.05 6.20 5.95 6.18 6.00 5.90 50 100 Pressure, psig 0 0 100 200 300 100 200 300 400 0 Pressure, psig Pressure, psig

1	2	3	4	5	6	7	8	9	10
Temp, F	Pressure, psig	mass, g	sample mass, g	Bulk density, g/cc	Porosity, %	Pore volume, cc	Propane density from NIST, g/cc	Gas in pore, g	Condensation mass, g
70	80.05	1.98E-01	79.795	2.7	44.53	23.72	0.01294	0.31	-1.09E-01
70	85.00	2.61E-01	79.795	2.7	44.53	23.72	0.013747	0.33	-6.54E-02
70	90.13	3.31E-01	79.795	2.7	44.53	23.72	0.0146	0.35	-1.50E-02
70	95.30	3.84E-01	79.795	2.7	44.53	23.72	0.015477	0.37	1.64E-02
70	99.90	4.47E-01	79.795	2.7	44.53	23.72	0.016274	0.39	6.12E-02
70	105.20	5.19E-01	79.795	2.7	44.53	23.72	0.017211	0.41	1.10E-01
70	109.85	6.36E-01	79.795	2.7	44.53	23.72	0.018052	0.43	2.08E-01
115	185.50	7.53E-01	79.817	2.7	44.53	23.73	0.028649	0.68	7.34E-02
115	190.40	8.08E-01	79.817	2.7	44.53	23.73	0.029615	0.70	1.05E-01
115	195.40	8.61E-01	79.817	2.7	44.53	23.73	0.030624	0.73	1.35E-01
115	200.60	9.10E-01	79.817	2.7	44.53	23.73	0.031699	0.75	1.58E-01
115	205.30	9.71E-01	79.817	2.7	44.53	23.73	0.032696	0.78	1.95E-01
115	210.00	9.94E-01	79.817	2.7	44.53	23.73	0.033718	0.80	1.94E-01
115	212.80	1.04E+00	79.817	2.7	44.53	23.73	0.034339	0.81	2.28E-01
150	310.00	1.40E+00	79.917	2.7	44.53	23.76	0.050641	1.20	1.92E-01
150	314.75	1.42E+00	79.917	2.7	44.53	23.76	0.051941	1.23	1.83E-01
150	319.57	1.48E+00	79.917	2.7	44.53	23.76	0.053306	1.27	2.16E-01
150	325.40	1.54E+00	79.917	2.7	44.53	23.76	0.055026	1.31	2.33E-01
150	330.60	1.57E+00	79.917	2.7	44.53	23.76	0.056632	1.35	2.27E-01

We designed a simple device and methodology to measure capillary condensation in mesoporous rocks:

- Vibration (oscillation) based measurement principle.
- Effect of added mass corrected by calibration using non-porous samples
- Effect of pore gas, as shown by Berea sample can be determined using pore volume and gas density
- Additional mass gained in Niobrara, a mesoporous rock is due to capillary condensation was measured
- Mass gained due to capillary condensation for three different temperatures was measured
- Mass of condensation analyzed using Kelvin equation :

Smallest pore size: 2-4 nm (agrees with literature)

13

SBA-15

- Santa Barbara Amouphous-15
- Consists of mesoporous silica sieve based on hexagonal pores with a narrow PSD
- Pore diameter:5-30 nm
- High Hydrothermal and mechanical stability
- Chemically inert
- Contains by-products of granular silica and disordered mesostructures which attributes to weak hydrogen interactions

MCM-41

- Mobile Crystalline Material
- Hexagonally packed rod-shaped micelle structure forming a 1-D pore system.
- Pore size: 2-10nm
- Not hydrothermally and structurally stable
- Hydrolysis of the bare Si-O-Si(Al) in presence of water

References

- Preparation of MCM-41 with high thermal stability and complementary textural porosity, Huxing et al., 2001
- Nandiyanto, Asep Bayu Dani; Kim, Soon-Gil; Iskandar, Ferry; Okuyama, Kikuo (2009). "Synthesis of Silica Nanoparticles with Nanometer-Size Controllable Mesopores and Outer Diameters". *Microporous and Mesoporous Materials*
- Marc G.Frere, and Guy F. De Weireld, J. Chem eng Data 2002,47,823-829
- Agarwal and Schwarz Carbon Volume 26, No.6, pp 873-887, 1988
- Larson, Zachary, Younki Cho, and Xiaolong Yin. "Experimental technique to measure mass under high pressure conditions using oscillatory motions of a spring-mass system." Measurement Science and Technology 28, no. 6 (2017): 065902
- Prasad, Manika, Kenechukwu C. Mba, Tracy Sadler, and Mike L. Batzle. "Maturity and impedance analysis of organic-rich shales." SPE Reservoir Evaluation & Engineering 14, no. 05 (2011): 533-543

