

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

Research Summary

MEASURING MASS OF GAS IN-PLACE IN CORES

Siradon Prateepswangwong^{*}, Keerthana Krishanan Xiaolong Yin

Outline

- □ Objective
- □ Background
- □ Materials & Equipment
- □ Methodology & Results
 - Measure Spring Constant (k)
 - Determine Added Mass Coefficient (α)
 - Validate Pore gas Mass (m_p)
- Conclusion
- **Future** work

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Objective

Measure mass of gas in-place in cores (not crushed)

- Develop a method that determines mass by measuring the frequency of oscillation
- Test the method on Berea sandstone cores
- Verify that mass of pore gas can be measured using the oscillation method
- Measure Original Gas in-Place (OGIP) in other tighter rocks

Background

Hookian Spring

$$m = \frac{k}{4\pi^2 f^2}$$

- m = Effective mass (g) f = Frequency from Oscillation (Hz)
- k = Spring constant (N/mm)

Materials & Equipment

Larson, Cho, Yin (2017)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Materials & Equipment

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

$$\Delta m = m - m_0 - m_a - m_p$$

- $\Delta m = Mass attributed to gas condensation and adsorption (g)$
- m = Effective Mass from Oscillation (g)
- $m_0 = Mass of sample at ambient condition (g)$
- $m_a =$ Added Mass due to co-acceleration of gas external to the sample (g)
- $m_p = Mass due to co-acceleration of gas inside$ pores of the sample (g)

Methodology & Results

$$\Delta m = m - m_0 - m_a - m_p$$

 $m=\frac{k}{4\pi^2 f^2}$

- m = Effective mass from Oscillation (g)
- f = Frequency from Oscillation (Hz)
- k = Spring constant (N/mm)

 $m_a = \alpha P$

- α = Added mass coefficient (g/psi)
- P = Pressure (psi)

$$m_p = \emptyset V * \rho$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

<u>Step 1</u>: Measure Spring Constant (k)

Mass, m _o (g)	Spring Constant, k (N/mm)
10.971	0.14597
22.114	0.14610
33.085	0.14601
59.292	0.14591

* Every k shown in Table above is an average of 10-15 measurements

Spring Constant (k) = 0.14600 N/mm

Step 2: Determine Added Mass Coefficient (α)

- Using non-porous medium (Aluminium Bar)

$$\Delta m = m - m_0 - m_a - m_p$$

$$m = m_0 + m_a$$

$$\frac{k}{4\pi^2 f^2} = m_0 + \alpha P$$

$$\frac{k}{4\pi^2 f^2} = m_0 + \alpha P$$

$$\alpha = slope \ of \ the \ plot \ rac{k}{4\pi^2 f^2 m_0} \ vs \ rac{P}{m_o}$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, November 9, 2018, Golden, Colorado

 m_0

Methodology & Results

Step 2: Determine Added Mass Coefficient (α)

* Every point in Figure above represents an average of 10-15 measurements

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

<u>Step 3</u>: Verify that Pore Gas Mass (m_p) can be calculated using Oscillation Method

• Measure Pore Gas from Oscillation Method using porous medium (Berea Sandstone)

$$\Delta m = m - m_0 - m_a - m_p \qquad m_p = m - m_0 - m_a$$

• Measure Pore Gas from Water Saturation method

$$m_{p_{Saturation}} = \left(rac{m_{saturated} - m_{dry}}{
ho_{water}}
ight) *
ho_{N_2}$$

• Compare Pore Gas Masses (m_P) measured from two methods

Methodology & Results

<u>Step 3</u>: Verify that Pore Gas Mass (m_p) can be calculated using Oscillation Method

 $m_p = \emptyset V * \rho$

¢

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Conclusion

$$\Delta m = m - m_0 - m_a - m_p$$

$$\Delta m = \left(\frac{k}{4\pi^2 f^2}\right) - m_0 - (\alpha P) - (\emptyset V * \rho)$$

- $m_0 =$ Mass of sample at ambient condition (g)
- f = Frequency from Oscillation (Hz)
- k = Spring constant (N/mm)

- α = Added mass coefficient (g/psi)
- P = Pressure (psi)
- $\phi V = Pore volume (cc)$
- ρ = Fluid density (g/cc)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Apply This Method on Whole Unconventional Core

- To test if this method is also applicable on tighter cores
- To estimate Original Gas in-Place (OGIP)

$$OGIP = \Delta m + m_P = \left(rac{k}{4\pi^2 f_\infty^2}
ight) - m_o - m_a$$

* $f_{\infty} =$ Frequency from Oscillation at $t = \infty$

Future Work

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT