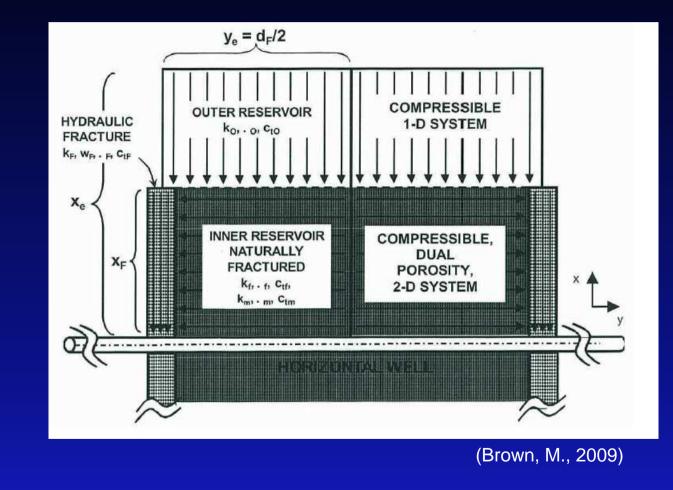


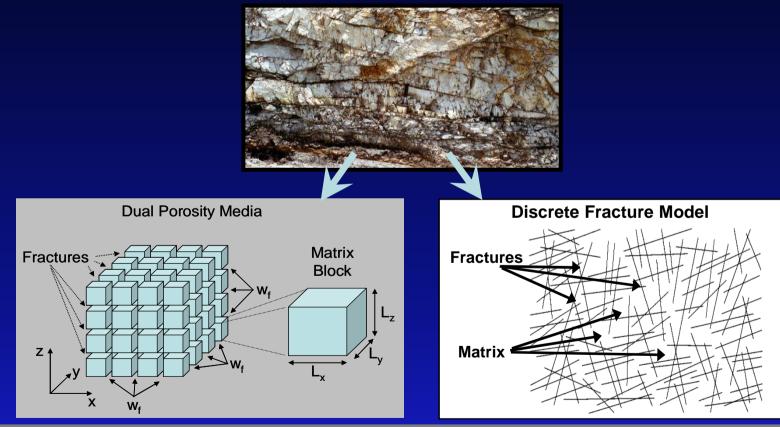
Research Summary


Application of Fractals to Modeling and Analysis of Naturally Fractured Unconventional Reservoirs

Ozlem Ozcan, Colorado School of Mines

Model Description

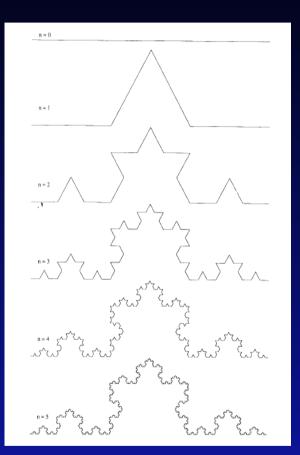
Trilinear Flow Model



Previous Modeling Approach

Currently producing nano-porous unconventional reservoirs are characterized by a complex network of fractures

Representation of Fractures in Reservoir Models



Objective

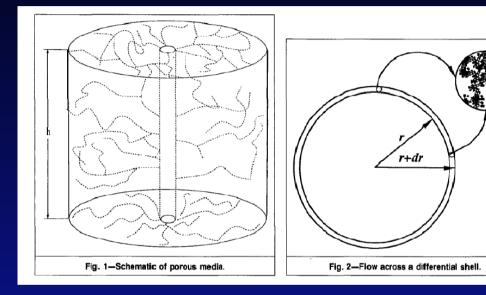
- To model the inner reservoir region by fractal geometry
- To define fracture properties as fractals for both space and time variables
- > To implement them in the diffusion equation

Fractal Geometry

Koch curve

$$\Delta P = \left(\frac{1}{\Delta y}\right)^{d_f}$$
$$4 = \left(\frac{1}{\frac{1}{3}}\right)^{d_f}$$
$$d_f = \frac{\ln 4}{\ln 3} = 1.261$$

 d_f is the fractal dimension


 ΔP is the change in the number of segments

 Δy is the change in the length of the segments

Previous Studies

Chang and Yortsos (1990)

$$\phi(r) = \phi_0 \left(\frac{r}{r_0}\right)^{d_{mf} - d}$$

$$k(r) = k_0 \left(\frac{r}{r_0}\right)^{d_{mf} - d - \ell}$$

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D_f x^{-\theta} \frac{\partial C}{\partial x} \right)$$

Previous Studies

Chang and Yortsos (1990)

Since the diffusion process of fractal reservoirs is history dependent, this solution can not fully describe the anomalous diffusion properties of fractals

Flamenco-Lopez and Camacho (2003), Camacho et al. (2008) & Camacho et al. (2011)

A new equation which includes a temporal fractional derivative

$$\frac{\partial^{\gamma} P_{Df}}{\partial t_{D}^{\gamma}} = \frac{1}{r_{D}^{d_{mf}-1}} \frac{\partial}{\partial r_{D}} \left(r_{D}^{\beta} \frac{\partial P_{Df}}{\partial r_{D}} \right)$$

where

$$\beta = d_{mf} - \theta - 1$$
$$\gamma = 2 / (2 + \theta)$$

Shortcomings of Previous Studies

(Raghavan	& Chen	, 2013)
-----------	--------	---------

- Based on radial symmetry
- Not appropriate to model flow to a fractured well

Method of Research		
Understanding the existing approaches and them to construct a solution for our problem		
Demonstration of applicability and improver results by simulated and field examples		
🔺 认 🛛 UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT	10	

Fall 2013 Semi-Annual Affiliates Meeting, November 8, 2013, Golden, Colorado