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Topics Covered In the Last Meeting

= Statistical Mechanics background

» GCMC algorithm

= P-T diagram of Bulk Methane
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Research Objective

Study the phase behavior in confined environment by
molecular simulation to investigate:

» The shift of the critical point of pure methane in confined
space

= Effect of the size of the simulation box on Grand Canonical
Monte Carlo (GCMC) simulation results

= Saturation pressure shift of confined pure methane
= Differences of the results from the published literature
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Background and Motivation

Bubble point & dew point lines are
captured using EOS

GCMC Results (Pitakbunkate et al, 2016,
Methane—Ethane mixture within two
Graphite Sheets)

Pressure, psi

We used Equilibrium Thermodynamics
and capillary pressure effect
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Background and Motivation

Observations

+ GCMC by Pitakbunkate et al (2016)
» Not a significant suppression in bubble
point line
» Big shift in critical point
» Conventional Use of Equilibrium
thermodynamics with capillary pressure:
* No shift in critical point

P 50  Significant suppression in bubble point
Temperature, F

Pressure, psi

—Dew Point

——Bubble Point

- - GCMC Result 5nm Bubble Point

- = GCMC Result 5nm Dew Point

== Equilibrium Thermodynamics 5nm Bubble Point

Methane 30.02% - Ethane 69.98% Mixture PT Diagram
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Dimensions of Graphite Sheets

* In horizontal direction, the graphite sheets are assumed
to be infinite

* RASPA (molecular simulation) uses Periodic Boundary
Conditions
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Dimension Comparison

100.54 A

* Interactions between particles & Lennard Jones Potential

* Pure methane was studied to decrease the computational
time
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Grand Canonical Monte Carlo Simulation

Constant Chemical Potential i, Constant Volume V, Constant Temperature T

Particle Bath
Simulation Box

Deletion and Insertion continue until equilibrium is reached:

HUparticle Bath = MSimulation Box
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Phase Transition Point in Density vs. Pressure Graph
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Retrieved from: Jacobs & Antonius (2005)
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Confined Pure Methane in 5 nm

Isotherms of CH4 in Confined Space of 5.0-nm Separation
of Slit Graphite at Different Temperatures
o 8 8
2 e 8
T T

v T
[ Legend:
[ (~®=) T=155K
[ (—e—) T=156K
[ (&) T=157K
- (~e—) 7= 158K
b (~o-) T=159K
L ) T=160K

T=161K

o
w
&

162K
163K

ol L0 14000

2
x

(
(
(
(
(
(
L (
(
(
(
(
(

Density (p), glcc

[ (~e=)T=172K
[ (=) T=173K
[~ (~e—) T=174K

| (—e—) T=179K
I (—=) 7=180K

i IFRTERN N M

n

n

n

4000 L

1 1
o =3
=3 =3
e} S
- 9

Pressure (p), kPa

Retrieved from Pitakbunkate et al. 2016
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Results and Discussion: Unconfined Pure Methane
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Results and Discussion: Unconfined Pure Methane
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Dimensions of Graphite Sheets

Pitakbunkate et al. (2016)

Our Study
H=2nm
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Results and Discussion: Confined Pure Methane in 2 nm
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Graphite Sheet Separation vs. Critical Properties

Critical Temperature of Confined Methane Critical Pressure of Confined Methane
as a Function of Pore Size as a Function of Pore Size
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Retrieved from Pitakbunkate et al. 2016

! Y UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT 15
' Advisory Board Meeting, November 3, 2017, Golden, Colorado

Additional Discussion with Different Methods

Pressure, kPa
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Conclusion

Equilibrium thermodynamics with capillary effect disagrees
with the GCMC results for methane ethane mixture

Simulation box size in confined & unconfined cases may
mask or distort the critical point shift

Increased box size decreases the time efficiency of
simulation

Wall-fluid interaction also affects the results of GCMC
simulations

These simulation parameters must be the reason why
different approaches give different results

Comparison to experimental results might be the solution to
this problem
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Supporting Slides

Interactions Between Particles & Lennard Jones
Potential

€ : depth of the potential well, kJ/mol
] o : finite distance at which the inter particle potential is zero
Uy = 4 (0)‘ r : distance between particles, A

r rm  is the distance at which the potential is maximum., A
Repulsive Term

Lorentz-Berthelot mixing rules
CH (ethane) (Schnabel, T. 2008)
CH, (n- Gii + 0j;
alkane) Ojj = 3
CH,
Cc

€ = [€ii€j
Transferable Potentials for Phase Equilibria (TraPPE) Force Field N =
Parameters: (Martin & Siepmann 1998)
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Supporting Slides

Interactions Between Particles & Lennard Jones
Potential

Surface Wall (Graphite Sheet)
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€ : depth of the potential well, kd/mol

o : finite distance at which the inter particle potential is zero
r : distance between particles, A

rm : is the distance at which the potential is maximum., A
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Supporting Slides

Methodology: Lennard Jones Potential, Cut Off Distance
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Supporting Slides

Methodology: Interaction Between a Particle and Surface
WEL

€ : depth of the potential well, kdJ/mol

o : finite distance at which the inter particle potential is zero
r = distance between particle and the wall, Angstrom

U = maximum energy, kJ/mol

p = surface particle density, particle/Angstrom
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Supporting Slides

Rotational and Translational Motion Algorithm (Closed

Lennard Jones Potential Before Random Motion:

Generate Random X, Y, Z to Determine a Random Displacement

Lennard Jones Potential After Random Motion: U(r'™N)

Generate a random number “X”: 0 <X <1

X <exp(-BlUE™) —UEV)]) > @ = Update the Particle Position
= ()

B: Boltzmann Constant Don’t Update the Particle Position
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Supporting Slides

MVT Algorithm (Open System)

PARTICLE BATH | Simulation Box
e ho f Ak ok

F % g kA HAE A
d R Kk kg h  F Hook
LRI A

Given P, T Calculate tpgrticie gatn Py EOS - PR

Run Monte Carlo Simulation for Translational and Rotational for i*" particle
Generate a random number “X” : 0<X<1

X < N EREVA >~ 0 »n Delete the Particle and Run the Algorithm for Next Particle

exp(Bu)vV =
o Define a Random Position, Insert a Particle There

B: Boltzmann Constant, A: De Broglie Wave Length, N: Number of Particles

!‘ UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT 24
’ Advisory Board Meeting, November 3, 2017, Golden, Colorado




Supporting Slides

pMVT Algorithm (Open System)

PARTICLE BATH Simulation Box

Generate a random number “X” : 0<X<1

Vexp(Biyexp(-pU) @y ¢  Update N = N+1 and Go Next Particle

X<
A3 )
< o

Delete Inserted Particle and Go to Next Particle

B: Boltzmann Constant, A: De Broglie Wave Length, N: Number of Particles
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Supporting Slides

Zarragoicoechea & Kuz (2004), Critical Point Shift Calculation

3 [T,
oy = 0.244*Pc‘;

o ) gLy aLy 2
cb

p p

Pcp—Pcp L] oLj 2
ap; =272 — 0.9409 (—) — 02415 (—)
cb

7 D Tp

oy Lennard Jones Size Parameter, A

Tep: Critical Temperature at Bulk Condition

Py Critical Pressure at Bulk Condition

Tcp: Critical Temperature in Nano-Pore

Pep: Critical Pressure in Nano-Pore

7, Pore Throat Radius

AT;: Relative Critical Temperature Shift, Dimensionless
AP;: Relative Critical Pressure Shift, Dimensionless
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