

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

Research Summary

Experimental Study and Modeling of the Effect of Pore Size Distribution on Phase Behavior in Nanopores

Lei Wang & Xiaolong Yin Petroleum Engineering, Colorado School of Mines

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado

Recapitulation: Summary

When the pressure of an oil-saturated porous medium is reduced

- a) Vapor phase first appears in the large pores (pore bodies)
- b) Vaporization increases the weight of the remaining liquid phase

6

Pore size distribution, sequence of vaporization, and the compositional change must be simultaneously considered to predict the state of phases in pores of given sizes.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado

(Courtesy of Dr. Honai	rpour.)		
> 50 nm (0.011) 25 nm (0.403)		Fluid composit Liquid Specific Liquid Viscosi Solution GOR $\geq N_2 0.007$ $\geq CO_2 0.023$ $\geq C1 0.330$	tion – a light oil (Eagle Ford) c Gravity = 0.551 ty = 0.103 cp = 1006 scf/STB Formation temperature
10 nm (0.299)	Pore size distribution	 > C2 0.050 > C3 0.053 > iC4 0.060 > nC4 0.067 > iC5 0.070 	= 189 °F Pb with no confinement = 1820 psin
<7.5 nm (0.287)		 > nC5 0.080 > nC6 0.110 > C13 0.150 	IFT @ Pb = 1,91 mN/m

	CCE	DE with CGS	
Pressure when liquid in 50nm pores is vaporized (1.1vol%)	1781 psia	1810 psia	
Expansion ratio	1.018	1.007	
Fluid in the excess volume	Gas	Liquid	
Liquid specific gravity	0.554	0.552	
Liquid viscosity	0.104 cp	0.103 cp	
IFT	2.09 mN/m	2.00 mN/m	DE improves liquid
Pressure when liquid in 25nm pores is vaporized (40.3vol%)	193 psia	1300 psia	properties. In CCE, liquid in por
Expansion ratio	11.37	1.295	<10 nm cannot vapori because of much heavier composition.
Fluid in the excess volume	Gas	Liquid	
Liquid specific gravity	0.658	0.580	
Liquid viscosity	0.190 cp	0.120 cp	breaks through liquid
IFT	11.60 mN/m	3.90 mN/m	

DE of retrograde gas with gas liberation--Results

Pressure when 10nm pores are filled with liquid	5440 psia	5440 psia	N. 1100 I
Expansion ratio	1.013	1.013	No difference here.
Gas specific gravity / viscosity	1.06 / 0.050 cp	1.06 / 0.050 cp	
Liquid specific gravity / viscosity	0.447 / 0.065 cp	0.447 / 0.065 cp	
IFT	0.001 mN/m	0.001 mN/m	
Pressure when liquid saturation reaches maximum	4630 psia	4702 psia	Domoval of gas
Expansion ratio	1.117	1.091	slightly reduced
Maximum liquid saturation	32.55%	32.23%	maximum liquid
Gas specific gravity / viscosity	0.88 / 0.034 cp	0.89 / 0.035 cp	saturation, liquid gravity/viscosity
Liquid specific gravity / viscosity	0.519 / 0.090 cp	0.514 / 0.088 cp	and IFT.
IFT	0.112 mN/m	0.093 mN/m	

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado

15

DE of retrograde gas with gas liberation--Results

	CCE	Differential Expansion	
Pressure when liquid in 25nm pores is re-vaporized	2022 psia	2022 psia	
Expansion ratio	2.22	2.00	
Gas specific gravity / viscosity	0.73 / 0.017 cp	0.73 / 0.017 cp	
Liquid specific gravity / viscosity	0.630 / 0.162 cp	0.630 / 0.162 cp	
IFT	3.66 mN/m	3.66 mN/m	
revenorization		· ····································	
 When the pressure is red becomes similar to the pressure is red 	luced to ~2000 ps reviously studied	ia, the liquid-gas contrast light oil situation.	
 When the pressure is red becomes similar to the pressure is red becomes similar to	luced to ~2000 ps reviously studied will be difficult to	ia, the liquid-gas contrast light oil situation. re-vaporize by further	

