

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

Diagnostic Fracture Injection Tests

Mohamed Ibrahim Mohamed

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

Phase I: Application of Machine Learning and Big Data

 Machine Learning is a subset of AI that focuses on learning rules from data.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Machine Learning

Type of machine learning:

- Supervised:
 - Predicting outputs based on inputs
 - Ex: Regression and Classification

Unsupervised:

- Reveal hidden structure in the data.
- Ex: Clustering

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Data set

- Carbonate gas reservoir
- Eight wells
- Seven logs predictor variables
 - GR, Resistivity, PE, Neutron density porosity, average Neutron density porosity.
 - Non-marine indicator and relative position

Nine discrete rock facies:

- Sandstone
- Coarse siltstone
- Fine siltstone
- Siltstone and shale
- Mudstone
- Wakestone
- Dolomite
- Packstone
- Bafflestone

Seven training wells

- Total points: 3232
- 20% test set

One blind test well

- Extract feature variables
 - GR, Resistivity, PE, Neutron density porosity, average Neutron density porosity.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Well Logging project Example

Well Logging project Example

- Models used:
- K nearest Neighbor
 - F1-Score: 0.43
- Random Forrest Classifier
 - F1-Score: 0.43

Well Logging project Example

- Applying the classification model to the blind data
- Now that we have a trained facies classification model we can use it to identify facies in wells that do not have core data.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

A short injection/falloff diagnostic test performed without proppant before a main fracture stimulation treatment

The intent is to break down the formation to create a short fracture during the injection period, and then to observe closure of the fracture system during the falloff period.

Diagnostic Fracture Injection Tests

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Diagnostic Fracture Injection Tests: ML Approach

Diagnostic Fracture Injection Tests: ML Approach

Current Data

- 7 wells
- 3.5 millions rows of attributes
- SQL Database
 - Easy access for data
 - Robust mathematical operations
- Because it's a ML approach, the more data we get, the more certain we are. And the lower the uncertainty, the more we trust our model.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

Phase II: Computational Modeling of Diagnostic Fracture Injection Tests in Discrete Complex Fracture Network.

Objective

- Develop a DFIT simulator to match and predict the pressure falloff after shut in.
- Focus on the potential effect of fracture network complexity for DFIT.
- Long term production forecasting.

Diagnostic Fracture Injection Tests

Model description

- Couples the fluid flow with stress induced by fracture deformation in complex 2D discrete fracture network.
- Single phase
- Isothermal
- Model involves:
 - Opening & propagation of new fracture
 - Sliding of preexisting fracturing
 - Combination of both
 - ≻Fracture closure

Diagnostic Fracture Injection Tests

Numerical methods to calculate stresses:

As the size and complexity of the fracture network increases, the challenge of geomechnical discrete fracture modeling grows considerably.

- Infinite element method
- Finite difference
 - Require discretization of the area (2D) around the fractures. Lead to a very large number of elements for complex networks.
- Boundary element
 - Avoid the need to discretize around fractures. Require solution of dense matrices.
- Extended finite Element Method:
 - Powerful technique for hydraulic fracturing modeling. New and have not been demonstrated on complex modeling.
- Others ?

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Fluid-flow equations
- Stress Calculations
- Generating DFN

- Fluid-flow equations
 - Unsteady-state fluid mass balance equation in fracture (Aziz and Settari 1979)

$$\frac{\partial(\rho E)}{\partial t} = \nabla \cdot \left(q_{flux}e\right) - q_{leakoff} + S_a$$
$$q_{flux} = \frac{k\rho}{\mu} \frac{\partial P}{\partial x_i}$$
$$T = ke = \frac{e^3}{12}$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Apertures calculations
 - Closed-fracture elements (Willis-Richards et al. 1996)

$$E = \frac{E_0}{1 + 9\frac{\sigma'_n}{\sigma_{n,Eref}}}$$

• Hydraulic aperture $e = \frac{\varphi_{e0}}{1 + 9\frac{\sigma'_n}{\sigma_{n,eref}}} + D_{eff} \tan(\frac{\varphi_{edil}}{1 + 9\frac{\sigma'_n}{\sigma_{n,eref}}})$

Open fracture elements

$$E = E_0 + E_{open}$$
$$Ee = e_0 + D_{eff} \tan(\varphi_{edil}) + E_{open}$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Stress calculations

At each element the stress is specified by three components: σ_n , τ_s and τ_d

Effective normal stress must be equal to zero

$$\sigma_n^r - P + \Delta \sigma_n = 0$$

Diagnostic Fracture Injection Tests

Data:

- Bulk modulus
- Poisson ratio
- Height
- Perf. Diameter
- Duration of injection
- Leak-off coefficient

- Tensile stress
- Fluid viscosity
- Matrix perm
- Perf. No
- Injection Schedule

Diagnostic Fracture Injection Tests

Answers/Output:

- Pressure Fall-off time series
- G-function Plot

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSM

Phase III: Model Check

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSM

THANKS

Questions ?

