

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

Research Summary

Dual-Mechanism Gas Flow in Naturally Fractured Source Rocks

Osman Apaydin & Erdal Ozkan Colorado School of Mines

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Kick-Off Meeting, November 16, 2012, Golden, Colorado

Flow Regimes in

FLOW REGIMES IN POROUS MEDIA

High Velocity Flow (Forcheimer's Equation)

Non-Linear Flow High *p*, *v*, & *k* Macro-pores and fractures

Moderate Velocity, No-Slip Flow (Darcy's Law)

Linear and Laminar Flow Moderate *p*, *v*, & *k* Micro-pores

Low Velocity, Slip Flow (Klinkenberg effect)

Non-Linear Flow Low *p*, *v*, & *k* Core measurements, nano-pores,

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Kick-Off Meeting, November 16, 2012, Golden, Colorado

Conventional vs. Unconventional

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Dual-Mechanism Flow in Source Rocks

Darcy velocity

Total Flow Velocity is the Sum of Darcy and Slip Velocities

$$v_{srm} = \frac{M_g D_g}{\rho_g} \left(\frac{\partial C_m}{\partial r} \right) = c_g D_g \left(\frac{\partial p_m}{\partial r} \right)$$
$$v_{rm} = v_{prm} + v_{srm} = \frac{k_{am}}{\mu_g} \left(\frac{\partial p_m}{\partial r} \right)$$

 $v_{prm} = \frac{k_m}{\mu_a} \left(\frac{\partial p_m}{\partial r} \right)$

Sum of the radial components of the velocity

 $D_g = \frac{31.57}{\sqrt{M_g}} k^{0.67}$ Slip velocity from Fick's law. (Ertekin et al., 1986)

$$k_{am} = k_m \begin{pmatrix} 1 + \frac{b_{am}}{p_m} \end{pmatrix} \qquad b_{am} = \frac{D_g \mu_g c_g p_m}{k_m}$$

Similar to Klinkenberg (1941) but function of pressure

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Kick-Off Meeting, November 16, 2012, Golden, Colorado

Dual-Mechanism Flow in Source Rocks

Contribution of diffusive flow to the apparent matrix permeability

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Kick-Off Meeting, November 16, 2012, Golden, Colorado

Dual-Mechanism Flow in Source Rocks

Combined effect of slip flow and stress-dependent natural fracture permeability on pressure responses.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Kick-Off Meeting, November 16, 2012, Golden, Colorado