

Pore/Molecular-Scale Measurements

MODELING PHASE BEHAVIOR IN CAPILLARY TUBE

Asm Kamruzzaman

PhD Candidate The Marathon Center of Excellence for Reservoir Studies (MCERS) Petroleum Engineering Department Colorado School of Mines

Outline

- Objective
- Model Description
- Results
 - Bubble point suppression
 - Effect of capillarity and IFT
- Discussion

 Calculate bubble point of a binary hydrocarbon mixture in a slit nanopore

 Incorporate effect of capillarity using Peng-Robinson EOS in flash calculation

 Address dependence of IFT on phase equilibrium using Parachors

Model Description

Profiled using the Atomic Force Microscope (AFM)

Bubble-Point Pressure Lowering Dependence on IFT (C1:C7=10-90% & 90-10%)

Nanoconfinement effect due to capillarity

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 4, 2018, Golden, Colorado

Bubble-Point Pressure Lowering Dependence on IFT (C1:C7=10-90%)

Impact of pore radius and contact angle on the capillary pressure

Bubble-Point Pressure Lowering Dependence on IFT (C1:C7=90-10%)

Impact of pore radius and contact angle on the capillary pressure

Bubble-Point Pressure Lowering Dependence on IFT (C1:C7=10-90% & 90-10%)

Capillary pressure vs. composition & contact angle

Fixed composition/changing pore radius & contact angle 55 55 55 C1:C7 = 10:90%C1:C7 = 10:90%C1:C7 = 10:90%50 50 50 r = 20 nm r = 50 nm r = 100 nm 45 45 45 40 40 40 Increasing r 35 35 Pc (psi) 35 Pc (psi) Pc (psi) Increasing O 30 30 30 25 25 25 20 20 20 C1:C7 15 15 15 10-90% 10 10 10 4.2 3.6 5 5 5 1.7 1.5 1.1 0.9 0.9 0.6 0.4 0 n $\Theta = 30^{\circ}$ $\Theta = 0^{\circ}$ $\Theta = 0^{\circ}$ $\Theta = 60^{\circ}$ $\Theta = 0^{\circ}$ $\Theta = 30^{\circ}$ $\Theta = 60^{\circ}$ $\Theta = 30^{\circ}$ $\Theta = 60^{\circ}$

Fixed composition/changing pore radius & contact angle

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 4, 2018, Golden, Colorado

IFT Dependence on Phase Behavior (C1:C3=10-90%, 30-70% & 90-10%)

Capillary pressure vs. composition & contact angle

IFT Dependence on Phase Behavior (C1:C3=10-90%, 30-70% & 90-10%)

Capillary pressure vs. composition & contact angle

 \Box

Fixed composition/changing pore radius & contact angle

Pore-Size Distribution Effect in Shale Reservoir Phase Behavior

Micro-nano pore size distribution (PSD)

(Niobrara mudrock system)

- Micro-nano pore dominated matrix
- Clay-and organic matter associated finer pores
- Even smaller pore-throat sizes
- Large IFT/Pc due to the nano-confinement

Nanopores vs. specific surface area

(Niobrara mudrock system)

- Strong link; micro-nano PSD/SSA
- Larger SA = stronger interface and higher IFT/Pc
- Finer pores = large capillary condensation effect (Kelvin equation)

Conceptual Shale Reservoir Pore Network Model

The origin of capillarity and IFT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 4, 2018, Golden, Colorado

Thank you

