

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Research Summary

Interference Test Analysis with Two Fractured Horizontal Wells

Andreas M. Lumban Gaol, CSM

Overview

- Fractured horizontal wells in low-permeability reservoirs
- As high-conductivity paths.
- Advantages:
 - ✓ Increase contact area
 - ✓ Improve project economics
- Physical mechanism → still limited → interference test

Fractured Horizontal Well

(after Torcuk et al., 2013)

What is Interference Test?

At least two wells (points) are involved

Background

- No analytical (or semi-analytical) solution.
- To develop the mathematical model:
 - Finite-conductivity fracture (Cinco-Ley and Meng, 1988)
 - Fractured horizontal well:
 - Infinite reservoir (Raghavan et al., 1997)
 - Closed rectangular reservoir (Chen and Raghavan, 1997)
 - Open horizontal section (Ozkan, 1988)
 - Superposition theorem application

Schematic Model

Mathematical Model

Finite-conductivity fracture

$$\frac{1}{2x_{fD}} \int_{-x_{fD}}^{+x_{fD}} \frac{1}{q_{fD}} (\alpha, s) K_0 \left[\sqrt{(x_D - x_{wD} - \alpha)^2 + (y_D - y_{wD})^2} \sqrt{u} \right] d\alpha + \frac{\pi}{C_{fD}} \int_{x_{wD}}^{x_D} \int_{x_{wD}}^{x_D} \frac{1}{q_{fD}} (x_D^*) dx_D^* dx_D^* = \frac{\pi x_D}{C_{fD} s}$$

$$= \frac{1}{2x_{fD}} \int_{-x_{fD}}^{+x_{fD}} \frac{1}{q_{fD}} (\alpha, s) K_0 \left[\sqrt{(x_D - x_{wD} - \alpha)^2 + (y_D - y_{wD})^2} \sqrt{u} \right] d\alpha + \frac{\pi}{C_{fD}} \int_{x_{wD}}^{x_D} \int_{x_{wD}}^{x_D} \frac{1}{q_{fD}} (x_D^*) dx_D^* dx_D^* = \frac{\pi x_D}{C_{fD} s}$$

Closed rectangular – single-fracture system solution

$$\begin{split} & -\frac{1}{p_{fD}}(x_D, y_D) = \frac{\pi}{x_{eD}} \int_{-x_{fD}}^{+x_{fD}} \frac{1}{q_{fD}}(\alpha, s) \left\{ \frac{\left[\cosh\left(\sqrt{u}y_{eD1}\right) + \cosh\left(\sqrt{u}y_{eD2}\right)\right]}{\in} + \frac{2x_{eD}}{\pi x_{fD}} \right. \\ & \left. -\frac{1}{k}\sin\left(k\pi \frac{x_{fD}}{x_{eD}}\right)\cos\left(k\pi \frac{x_{wD}}{x_{eD}}\right)\cos\left(k\pi \frac{x_{D}}{x_{eD}}\right) \frac{\left[\cosh\left(\epsilon_{k} y_{eD1}\right) + \cosh\left(\epsilon_{k} y_{eD2}\right)\right]}{\epsilon} \right\} d\alpha \end{split}$$

Semi-Analytical Solution

fracture discretization:

total flux equation:

$$\sum_{i=1}^{m} q_{fDi} = \frac{m}{s}$$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m+1} & 1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,m+1} & 1 \\ a_{3,1} & a_{3,2} & \dots & a_{3,m+1} & 1 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,m+1} & 1 \\ 1 & 1 & \dots & 1 & 0 \end{bmatrix} \times \begin{bmatrix} \overline{q}_{fD1}(s) \\ \overline{q}_{fD2}(s) \\ \overline{q}_{fD2}(s) \\ \overline{q}_{fD2}(s) \\ \vdots \\ \overline{q}_{fD(M-1)}(s) \\ \overline{p}_{wD}(s) \end{bmatrix} = \begin{bmatrix} \pi x_{D1}/C_{fD}s \\ \pi x_{D2}/C_{fD}s \\ \pi x_{D3}/C_{fD}s \\ \vdots \\ \pi x_{Dm}/C_{fD}s \\ m/s \end{bmatrix}$$

Matrix Equation for Interference Test

$$[A] \cdot \{x\} = \{B\}$$

Superposition Theorem:

$$\overline{p}_D = \overline{p}_{DA} + \overline{p}_{DO}$$

Inf. cond. wellbore:

Total flux equation:

$$\sum_{k=1}^{n_A} \sum_{i=1}^{m_A} q_{fDi,kA} = \frac{m_A}{S}$$

$$\sum_{k=1}^{n_O} \sum_{i=1}^{m_O} q_{fDi,kO} = 0$$

Pressure convolution:

$$\overline{p}_{wDA} = \sum_{k=1}^{n_A} s \overline{q}_{DkA} \overline{p}_{wDAj,k}$$

$$\frac{1}{p_{wDO}} = \sum_{k=1}^{n_O} s_{q_{DkO}} - p_{wDOj,k}$$

Preliminary Results

- Two fractured horizontal wells in an infinite reservoir (base case)
- Zipper well configuration
- Fractured horizontal well intercepted by a stand-alone fracture

Base Case - Active Well

Base Case – Observation Well

Zipper Well Configurations

Frac. Hz. Well with a Stand-Alone Fracture $(n_F = 5)$

This model will be used for interference test with a standalone (crossing) finite-conductivity fracture

Ongoing Works

 Discussions on the distribution of multiplefracture fluxes, pressure-transient responses, and boundary effects.

Effect of:

- Horizontal and vertical separation (zipper and non-zipper)
- Open horizontal sections
- Permeability anisotropy
- Stand-alone fracture crossing both active and observation wells

Thank you...