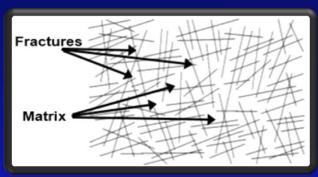


Research Summary

Anomalous Diffusion in SRV

Ozlem OZCAN, Colorado School of Mines Hulya SARAK, Istanbul Technical University / CSM

Problem Statement


Complex Network of Fractures

Large variations of


- scale
- connectivity
- conductivity

Discrete Fracture Network Model (DFN)

Not the tool of choice for most routine engineering applications

Dual-Porosity Models

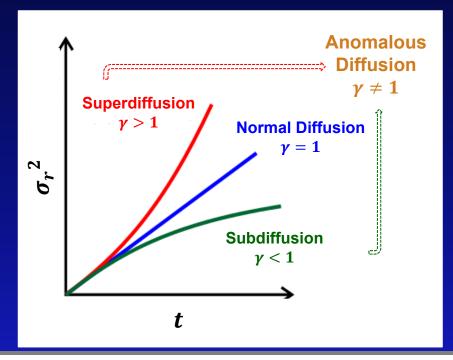
Practical but highly idealized

Problem Statement

Complex Network of Fractures

Alternatives to account for the non-uniform distribution of fractures

ANOMALOUS (FRACTIONAL) DIFFUSION



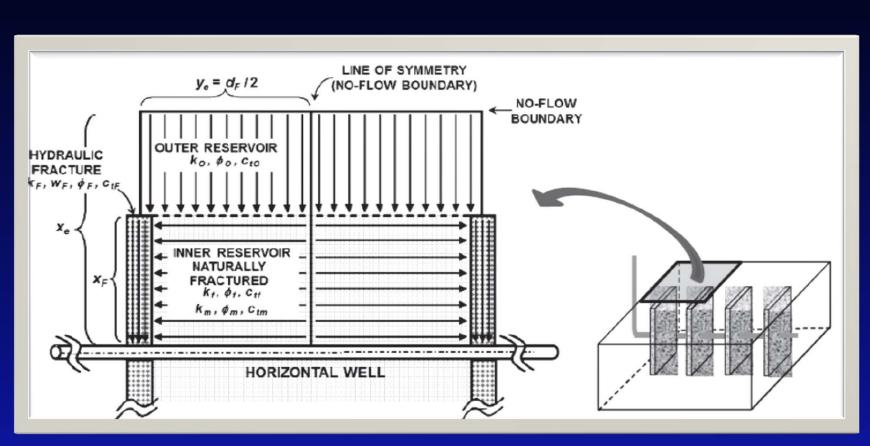
Background

Diffusion Result of the Random Brownian Motion of individual particles

General relationship between σ_r^2 and t:

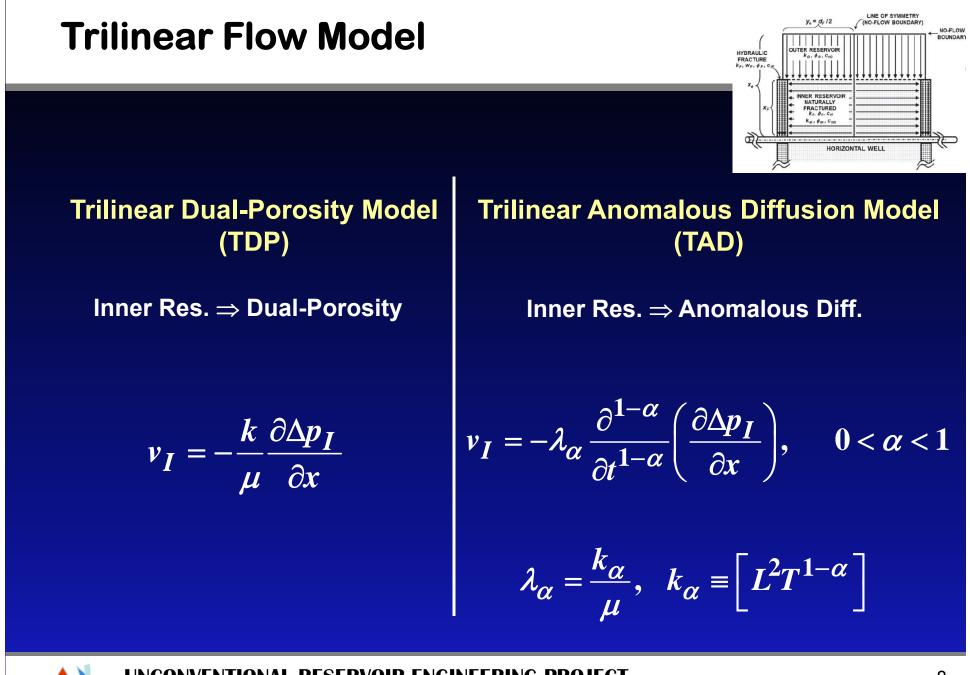
$$\sigma_r^2 \sim D t^{\gamma}$$

Scope of Research
To investigate the potential of the
ANOMALOUS DIFFUSION concept as an
alternative to the dual-porosity idealizations
of the SRV.


The TRILINEAR FLOW MODEL is modified

by replacing the dual-porosity idealization

with the <u>anomalous</u> assumption.


Trilinear Flow Model

(Brown, 2009)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado 8

TDP & TAD Models

TDP

$$\left\{ \begin{array}{l} \underset{w_{D}}{\text{Pow}} \\ \end{array} \right\} \overline{p}_{wD} = (\overline{p}_{FD})_{x_{D}=0} = \frac{\pi}{sC_{FD}\sqrt{\alpha_{F}}} \tan h(\sqrt{\alpha_{F}}) \end{array}$$

 $\beta_{O} = \sqrt{s/\eta_{OD}} tanh\left[\sqrt{s/\eta_{OD}} (x_{eD} - 1)\right]$

 $\beta_F = \sqrt{\alpha_0} tanh[\sqrt{\alpha_0}(y_{eD} - w_D/2)]$

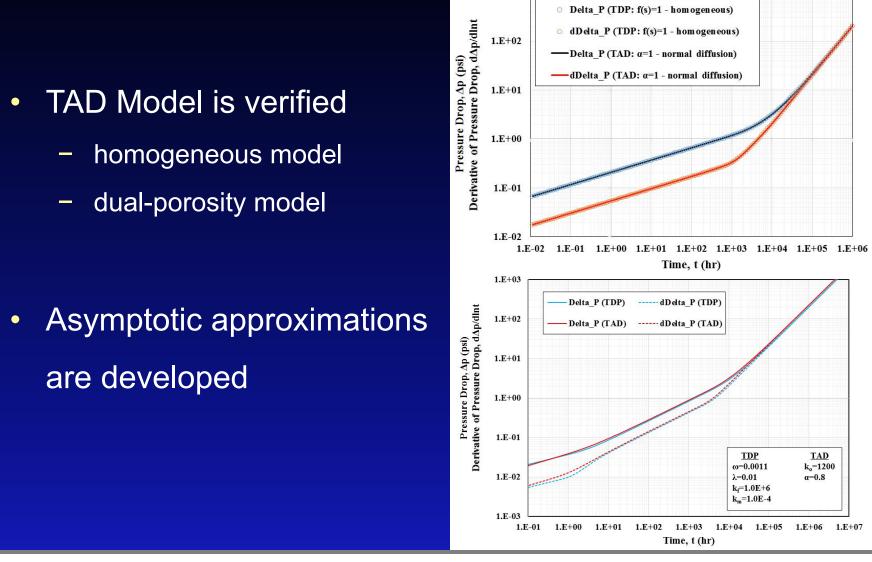
 $\alpha_O = \frac{\beta_O}{C_{RD} y_{eD}} + u$

 $\alpha_F = \frac{2\beta_F}{C_{FD}} + \frac{s}{\eta_{FD}}$

TAD

$$\overline{p}_{wD} = (\overline{p}_{FD})_{x_D=0} = \frac{\pi}{sC_{FD}\sqrt{\alpha_F}} \tanh(\sqrt{\alpha_F})$$

$$\alpha_O = \left(\frac{x_F^2}{\eta_I}\right)^{1-\alpha} s^{\alpha} \left[1 + \left(\frac{\lambda_O}{\lambda_I} s^{-1} \beta_O\right)\right]$$

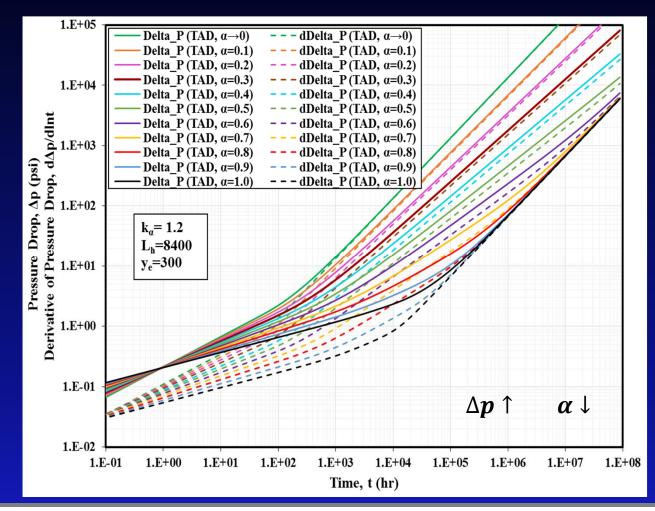

$$\beta_O = \sqrt{s/\eta_{OD}} \tanh\left[\sqrt{s/\eta_{OD}} (x_{eD} - 1)\right]$$

$$\alpha_F = \left[\frac{2}{w_D}\frac{\lambda_I}{\lambda_F} \left(\frac{\eta_I}{x_F^2}\right)^{1-\alpha} s^{1-\alpha}\beta_F + \frac{1}{\eta_{FD}}s\right]$$

$$\beta_F = \sqrt{\alpha_0} tanh[\sqrt{\alpha_0}(y_{eD} - w_D/2)]$$

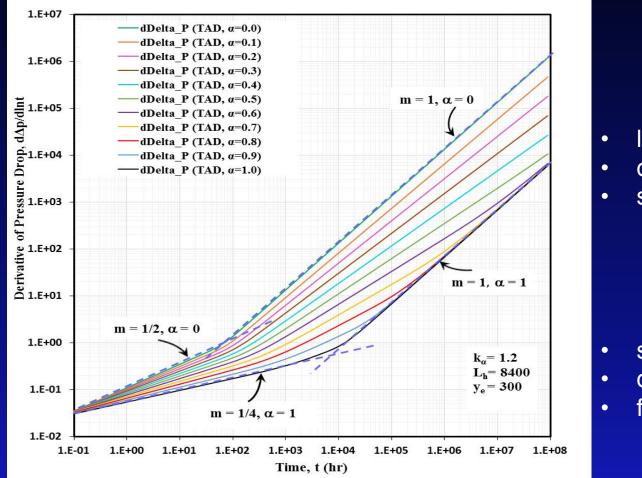
UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado 9

Verification of TAD Model



1.E+03

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado 1.E+07


Effect of Fractional Order of the Time Derivative (α)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 13&14, 2014, Golden, Colorado

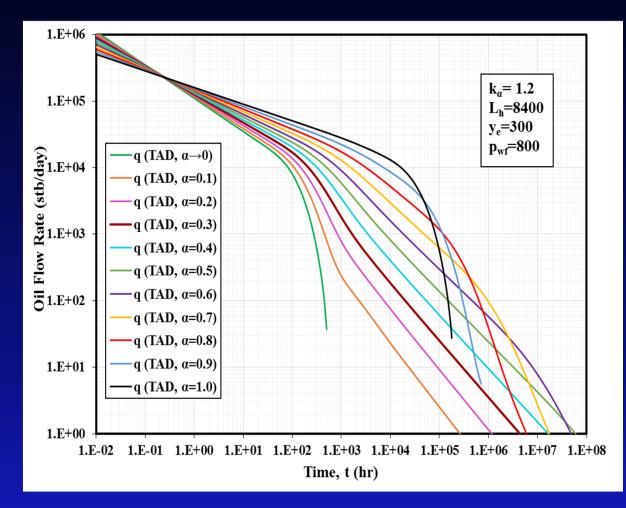
Effect of Fractional Order of the Time Derivative (α)

$$\alpha \rightarrow \mathbf{0}$$

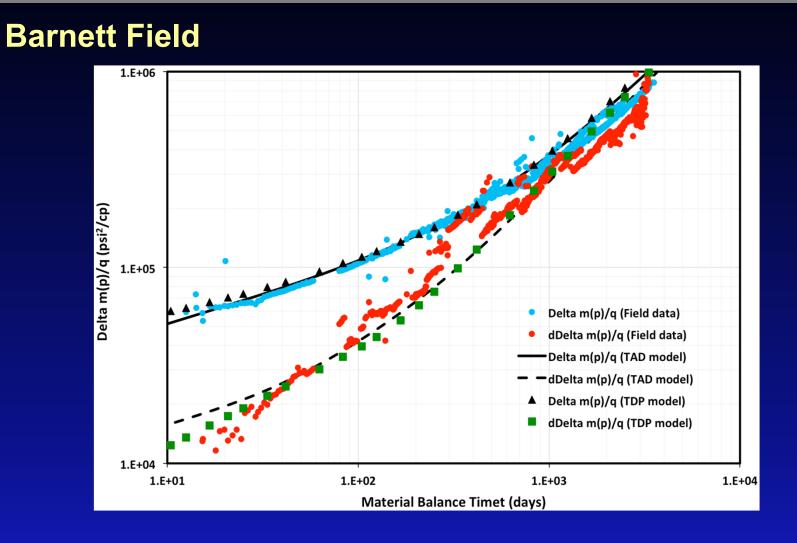
- longer interruptions
- dominance of matrix
- slower depletion

$$\alpha \rightarrow 1$$

shorter interruptions dominance of fractures faster depletion


- UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Combined Effect of Anomalous Diffusion Parameters (α and k_{α})


Rate Decline Characteristics

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Field Application

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Status

Space and Time Fractional Anomalous Diffusion

$$v_{I} = -\lambda_{\alpha,\beta} \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left(\frac{\partial^{\beta} \Delta p_{I}}{\partial x^{\beta}} \right), \quad \lambda_{\alpha,\beta} = \frac{k_{\alpha,\beta}}{\mu}, \qquad 0 < \alpha < 1 \text{ and } 0 < \beta < \frac{\partial^{2} \Delta p_{I}}{\partial x^{\beta}} \left(\lambda_{\alpha,\beta} \frac{\partial^{\beta} \Delta p_{I}}{\partial x^{\beta}} \right) + \frac{\partial^{2} \partial p_{I}}{\partial y} \left(\lambda_{\alpha,\beta} \frac{\partial^{\beta} \Delta p_{I}}{\partial y^{\beta}} \right) = \left(\phi C_{t} \right)_{I} \frac{\partial^{\alpha} \Delta p_{I}}{\partial t^{\alpha}}$$

$$\overline{p}_{ID}(y_D,s) = \overline{p}_{ID}(\mathbf{0},s)E_{\beta+1}(\alpha_o y_D^{\beta+1}) + \left[\frac{d^{\beta}}{dy_D^{\beta}}\overline{p}_{ID}(y_D,s)\right]_{y_D=\mathbf{0}} y_D^{\beta} E_{\beta+1,\beta+1}(\alpha_o y_D^{\beta+1})$$

where;

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$

 α : fractional order of the <u>time</u> derivative β : fractional order of the <u>space</u> derivative

Conclusions

- Anomalous diffusion model can be alternative to dual porosity based models.
- Anomalous diffusion model can capture wide variety of flow behaviors.
- The interpretations of the pressure and flow rate behaviors predicted by the anomalous diffusion model are consistent with the physical expectations and the results of the alternate models.
- Anomalous diffusion model does not require explicit references to the intrinsic properties of the matrix and fracture media.
- TAD model is useful for performance predictions and pressure- and ratetransient analysis of fractured horizontal wells in tight unconventional reservoirs.

Thank You

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

General Data

WELL, RESERVOIR, AND FLUID DATA (Intrinsic					
Formation thickness, h, ft	250				
Wellbore radius, r_w , ft	0.25				
Horizontal well length, Lh, ft	2800				
Number of hydraulic fractures, nF	15				
Distance between hydraulic fractures, d_F , ft	200				
Distance to boundary parallel to well (1/2 well spacing), xe, ft	250				
Inner reservoir size, ye, ft	100				
Viscosity, μ , cp	0.3				
Hydraulic fracture porosity, ϕ_F , fraction	0.38				
Hydraulic fracture permeability, k_F , md	5.0E+04				
Hydraulic fracture total compressibility, ctF, psi-1	1.0E-04				
Hydraulic fracture half-length, x_F , ft	250	INNER RESERVOIR DATA			
Hydraulic fracture width, wF, ft	0.01	TDP (Intrinsic Properties)		TAD	
Outer reservoir permeability, ko, md	1.0E-04	Matrix permeability, km, md	1.0E-4	Phenomenological coefficient, k_{α} , md-hr ^{1-α}	1.2
Outer reservoir porosity, ϕ_O	0.05	Matrix porosity, ϕ_m	0.05	Porosity compressibility	4.62E-4
Outer reservoir compressibility, ct0, psi-1	1.0E-05			product, $(\phi c_t)_{\alpha}$, ps1 ⁻¹	4.021-4
Constant flow rate, q , stb/day	150	Matrix total compressibility, ctm, psi-1	1.0E-5		
		Natural fracture permeability, kf, md	1.0E+3		
		Natural fracture porosity, ϕ_f	0.7		
		Natural fracture total compressibility, <i>ct</i> , psi ⁻¹	5.5E-1		
		Natural fracture width, hf, ft	3.0E-3		

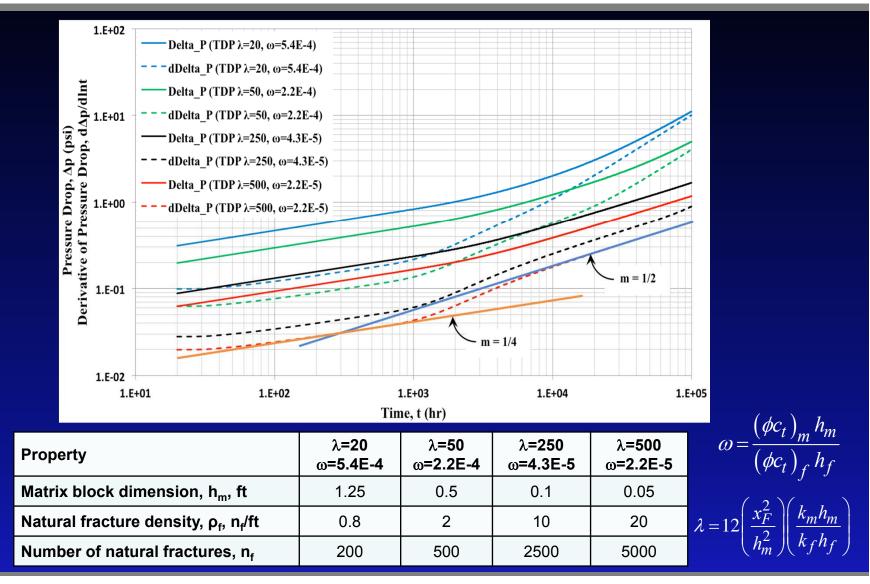
UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Barnett Field Data

Formation thickness, h, ft	300
Reservoir temperature, T, R	565.67
Distance to boundary parallel to well (1/2 well spacing), x _e , ft	275
Inner reservoir size, y _e , ft	90.3
Viscosity, μ, cp	0.02
The order of fractional derivative of time, α	0.8
Phenomenological coefficient of anomalous diffusion, k_{α} , md-hr ^{1-α}	0.13
Porosity – compressibility product of inner reservoir, $(\phi c_t)_{\alpha}$, psi ⁻¹	2.00E-04
Hydraulic fracture porosity, φ _F	0.38
Hydraulic fracture permeability, k _F , md	1.00E+03
Hydraulic fracture total compressibility, c _{tF} , psi ⁻¹	1.00E-04
Hydraulic fracture half-length, x _F , ft	275
Hydraulic fracture width, w _F , ft	0.01
Outer reservoir permeability, k _o , md	1.00E-06
Outer reservoir porosity, φ _ο	0.04
Outer reservoir compressibility, c _{to} , psi ⁻¹	3.00E-04

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Constants Used in Asymptotic Approximations


<i>A</i> ₀₁		$\left(\frac{x_F^2}{\eta_{\alpha}}\right)^{1-\alpha} \left[1 + \left(\frac{\lambda_O}{\lambda_{\alpha}}\right) \left(\frac{x_{eD} - 1}{\eta_{OD}}\right)\right]$	·)]		
<i>Α</i> _{02,α}	$\left(\frac{x_F^2}{\eta_\alpha}\right)^{1-\alpha} \left(\frac{\lambda_O}{\lambda_\alpha}\right) \left(\frac{1}{\sqrt{\eta_{OD}}}\right)$				
A _{02,0.5}	$\left(rac{x_F^2}{\eta_lpha} ight)^{0.5}\left(rac{\lambda_O}{\lambda_lpha} ight)\left(rac{1}{\sqrt{\eta_{OD}}} ight)$				
A ₀₃	$\left(rac{x_F^2}{\eta_lpha} ight)^{1-lpha}$				
$A_{F,0}$	$rac{2}{w_D}rac{\lambda_lpha}{\lambda_F} \left(rac{\eta_lpha}{x_F^2} ight) B_{F,0} + rac{1}{\eta_{FD}}$	$B_{F,0}$	$\sqrt{A_{01}} \tanh\left[\sqrt{A_{01}}(y_{eD} - w_D/2)\right]$		
$A_{F1,\alpha}$	$\frac{2}{w_D}\frac{\lambda_{\alpha}}{\lambda_F} \left(\frac{\eta_{\alpha}}{x_F^2}\right)^{1-\alpha} B_{F1,\alpha}$	$B_{F1,\alpha}$	$A_{O1}(y_{eD}-w_D/2)$		
$A_{F2,\alpha}$	$\frac{2}{w_D}\frac{\lambda_{\alpha}}{\lambda_F} \left(\frac{\eta_{\alpha}}{x_F^2}\right)^{1-\alpha} B_{F2,\alpha}$	$B_{F2,\alpha}$	$\sqrt{A_{O1}}$		
$A_{F2,1,\alpha}$	$\frac{\frac{2}{w_D}\lambda_{\alpha}}{\lambda_F} \left(\frac{\eta_{\alpha}}{x_F^2}\right)^{1-\alpha} B_{F2,1,\alpha}$	$B_{F2,1,lpha}$	$A_{O2}(y_{eD}-w_D/2)$		
$A_{F2,2,\alpha}$	$\frac{\frac{2}{w_D}\lambda_{\alpha}}{\lambda_F} \left(\frac{\eta_{\alpha}}{x_F^2}\right)^{1-\alpha} B_{F2,2,\alpha}$	$B_{F2,2,lpha}$	$\sqrt{A_{O2,lpha}}$		
$A_{F2,0.5}$	$\frac{2}{w_D}\frac{\lambda_{\alpha}}{\lambda_F} \left(\frac{\eta_{\alpha}}{x_F^2}\right)^{1/2} B_{F2,0.5}$	B _{F2,0.5}	$\sqrt{A_{02,0.5}} \tanh\left[\sqrt{A_{02.05}}(y_{eD} - w_D/2)\right]$		
A _{F3,0}	$\frac{2}{w_D}\frac{\lambda_{\alpha}}{\lambda_F} \left(\frac{\eta_{\alpha}}{x_F^2}\right) B_{F3,0} + \frac{1}{\eta_{FD}}$	B _{F3,0}	$\sqrt{A_{03}} \tanh\left[\sqrt{A_{03}}(y_{eD} - w_D/2)\right]$		
$A_{F3,1,\alpha}$	$\frac{2}{w_D}\frac{\lambda_\alpha}{\lambda_F} \left(\frac{\eta_\alpha}{x_F^2}\right)^{1-\alpha} B_{F3,1,\alpha} + \frac{1}{\eta_{FD}}$	$B_{F3,1,\alpha}$	$A_{O3}(y_{eD}-w_D/2)$		
$A_{F3,2,\alpha}$	$\frac{2}{w_D}\frac{\lambda_\alpha}{\lambda_F} \left(\frac{\eta_\alpha}{x_F^2}\right)^{1-\alpha} B_{F3,2,\alpha}$	B _{F3,2,α}	$\sqrt{A_{O3}}$		

Asymptotic Approximations

Time Range	Conditions	Pressure	Log-log Slope	Early- Intermediate Time	α ≠ 0.5, x _{eD} ≠ 1	$\lim_{\substack{\mathbf{t}_{D}\to\infty\\\alpha\neq 0.5}} \mathbf{p}_{wD} = \frac{4\pi t_{D}^{1/4}}{\Gamma(1/4)C_{FD}\sqrt{A_{F2,1,\alpha}}}$	1/4
Late Time	$\alpha \neq 0, x_{eD} \neq 1$	$\lim_{\substack{\mathbf{t}_{D}\to\infty\\\alpha\neq0}}\mathbf{p}_{wD}=\frac{\pi\mathbf{t}_{D}}{C_{FD}A_{F1,\alpha}}$	1				
	$\alpha=0,x_{eD}\neq 1$	$\lim_{\substack{\mathbf{t}_{\mathrm{D}}\to\infty\\\alpha=0}}\mathbf{p}_{\mathrm{w}\mathrm{D}}=\frac{\pi\mathbf{t}_{\mathrm{D}}}{C_{\mathrm{FD}}A_{\mathrm{F},0}}$			$\alpha = 0.5, \\ x_{eD} \neq 1$	$\lim_{\substack{t_D \to \infty \\ \alpha = 0.5}} p_{wD} = \frac{4\pi t_D^{1/4}}{\Gamma(1/4)C_{FD}\sqrt{A_{F2,0.5}}}$	
	$\alpha \neq 0, x_{eD} = 1$	$\lim_{\substack{\mathbf{t}_{\mathrm{D}}\to\infty\\\alpha\neq 0}}\mathbf{p}_{\mathrm{WD}} = \frac{\pi \mathbf{t}_{\mathrm{D}}}{C_{\mathrm{FD}}A_{\mathrm{F3,1,\alpha}}}$		Late- Intermediate $(\alpha \rightarrow 1)$ to Late $(\alpha \rightarrow 0)$ Times Early- Intermediate $(\alpha \rightarrow 1)$ to Late- Intermediate $(\alpha \rightarrow 0)$ Times	$\alpha \neq 0$, $x_{eD} \neq 1$	$\frac{\lim_{t_D \to \infty} p_{wD}}{2\pi t_D^{\frac{2-\alpha}{2}}}$ $\frac{2-\alpha}{(2-\alpha)\Gamma(\frac{2-\alpha}{2})C_{FD}A_{F2,\alpha}}$	2-a
	$\alpha=0,x_{eD}=1$	$\lim_{\substack{t_D \to \infty \\ \alpha = 0}} p_{wD} = \frac{\pi t_D}{C_{FD} A_{F3,0}}$			$\alpha \neq 0$, $x_{eD} = 1$	$\lim_{\substack{\mathbf{t}_{D}\to\infty\\\alpha\neq0\\\mathbf{2\pi t_{D}}^{\left(\frac{2-\alpha}{2}\right)}}}\mathbf{p}_{WD} =$	$\frac{2-\alpha}{2}$
	$\alpha \neq 0, x_{eD} \neq 1$	$\lim_{\substack{t_{D}\to\infty\\ C_{FD}\sqrt{A_{F1,\alpha}}}} p_{wD} = \frac{2\sqrt{\pi t_{D}}}{C_{FD}\sqrt{A_{F1,\alpha}}}$	1/2			$(2-\alpha)\Gamma\left(\frac{2-\alpha}{2}\right)C_{FD}A_{F3,2,\alpha}$	
	$\alpha=0,x_{eD}\neq 1$	$\frac{\alpha \neq 0}{\underset{\substack{\mathbf{t}_{D} \to \infty \\ \alpha = 0}}{\lim} p_{wD} = \frac{2\sqrt{\pi t_{D}}}{C_{FD}\sqrt{A_{F,0}}}}$			$\alpha \neq 0$, $x_{eD} \neq 1$	$\frac{\lim_{t_{D}\to\infty}p_{wD}}{\overset{\alpha\neq0}{\frac{2-\alpha}{4\pi t_{D}^{\frac{2-\alpha}{4}}}}}$	2-α
Late- Intermediate	$\alpha \neq 0.5, x_{eD} \neq 1$	$\underset{\substack{t_D \to \infty \\ \alpha \neq 0.5}}{\lim} p_{wD} = \frac{2\sqrt{\pi t_D}}{C_{FD}A_{F2,1,\alpha}}$			$\alpha \neq 0, x_{eD} = 1$	$ \frac{\lim_{\substack{t_D \to \infty \\ \alpha \neq 0}} p_{wD} = \frac{1}{4\pi t_D^{(2-\alpha)}} $	$\frac{2-\alpha}{4}$
Time	$\alpha=0.5,x_{eD}\neq 1$	$\lim_{\substack{\mathbf{t}_{\mathrm{D}}\to\infty\\ \alpha=0.5}} \mathbf{p}_{\mathrm{wD}} = \frac{2\sqrt{\pi t_{\mathrm{D}}}}{C_{\mathrm{FD}}A_{\mathrm{F2,0.5}}}$				$\overline{(2-\alpha)\Gamma(\frac{2-\alpha}{4})}C_{FD}\sqrt{A_{F3,2,\alpha}}$ $\lim_{t_D\to\infty}p_{WD} =$	
	$\alpha \neq 0, x_{eD} = 1$	$\lim_{\substack{t_D \to \infty \\ \alpha \neq 0}} p_{wD} = \frac{2\sqrt{\pi t_D}}{C_{FD}\sqrt{A_{F3,1,\alpha}}}$		Intermediate to Late Times	$\alpha \neq 0.5,$ $x_{eD} \neq 1$	$\frac{\alpha \neq 0.5}{4\pi t_D^{(3-2\alpha)/4}}$ $\frac{(3-2\alpha)\Gamma\left(\frac{3-2\alpha}{4}\right)}{(3-2\alpha)\Gamma\left(\frac{3-2\alpha}{4}\right)}C_{FD}A_{F2,2,\alpha}$	$\frac{3-2\alpha}{4}$
	$\alpha=0,x_{eD}=1$	$\lim_{\substack{t_D \to \infty \\ \alpha = 0}} p_{wD} = \frac{2\sqrt{\pi t_D}}{c_{FD}\sqrt{A_{F3,0}}}$		Intermediate to Late Times	$lpha eq 0.5, \ \mathbf{x}_{eD} eq 1$	$\frac{\underset{t_D \to \infty}{\lim} p_{wD} =}{\frac{\alpha \neq 0.5}{8\pi t_D^{(3-2\alpha)/8}}}$ $\overline{(3-2\alpha)\Gamma(\frac{3-2\alpha}{8})C_{FD}\sqrt{A_{F2,2,\alpha}}}$	$\frac{3-2\alpha}{8}$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT