

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

CSN

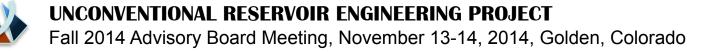
Research Summary

Analytical Modeling of Fractured Nanoporous Reservoirs

Ali Albinali, Colorado School of Mines

- US production from shale gas has increased over fivefold between 2007 and 2012 and the US is projected to export natural gas by 2040 (EIA 2014).
- Unconventional reservoirs persevere unique features:
 - Extreme low matrix permeability
 - Discrete/continuous fractures
 - Connected/isolated pores

- Scale and structural heterogeneity can lead to preferential flow paths → complex flow events, variations in pressure and composition.
- Current models (DP, DPDK, DFN, etc.) were developed for reservoirs with moderate \sim low permeability ($k \approx D mD$).
- Are these models suitable for unconventional reservoirs?


Problem Statement

- The need for new modeling approaches in inevitable.
- Representative of the nature of the porous media and the flow behaviors.
- Fluid transport in fractured media with complex geometry is similar to diffusion in disordered media \rightarrow Anomalous Diffusion.

- Several mathematical assumptions can lead to anomalous diffusion formulation.
- Displacement is related to time by:

$$\langle r^2 \rangle \sim t^{\gamma}$$
, where $\gamma = 1$ Normal diffusion
 $\langle 1$ Super diffusion
 $\langle 1$ Sub-diffusion
 $\neq 1$ Anomalous diffusion

- Flux law as presented by Raghavan and Chen (2013)
- fractional flux:

$$v_x = \frac{k_\alpha}{\mu} \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left(\frac{\partial p}{\partial x}\right)$$

- *α* < 1
- $\alpha = 2/(2+\theta)$, θ is the anomalous diffusion index.
- Note here that: $k_{\alpha} = L^2 T^{1-\alpha}$

- Dual porosity idealization:
 - Cylindrical system
 - Spherical matrix (r_m)
 - Radial flow
 - Line sink
 - Matrix: anomalous diffusion
 - Natural fractures: normal diffusion

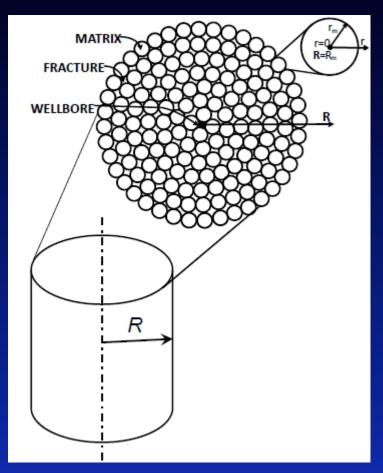


Figure 1: Dual Porosity Medium in Cylindrical System (Ozkan 2011)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Extending the solution to:
 - Horizontal well
 - Multi-stage fractured
 - SRV is DP region

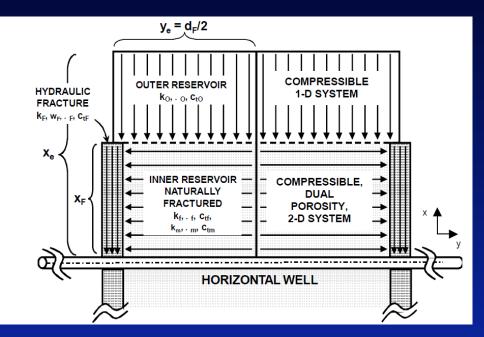


Figure 2: Tri-linear DP Model (Ozkan et al. 2009)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

• Derivation:

1)
$$\frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{k_f}{\mu} \frac{\partial p_f}{\partial R} \right) + \hat{q}_m = (\phi c_t)_f \frac{\partial p_f}{\partial t}$$

2)
$$\hat{q}_m = -(4\pi r_m^2) \left[\frac{k_\alpha}{\mu} \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left(\frac{\partial p_m}{\partial r} \right)_{r=r_m} \right] / \left(\frac{4\pi r_m^2 h_f}{2} \right)$$

or,

$$\hat{q}_m = -\frac{2}{h_f} \frac{k_\alpha}{\mu} \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left(\frac{\partial p_m}{\partial r}\right)_{r=r_m}$$

$$f =$$
 natural fractures, $m =$ matrix

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

• Derivation:

3)
$$\frac{1}{R_D} \frac{\partial}{\partial R_D} \left(R_D \frac{\partial \bar{p}_{fD}}{\partial R_D} \right) - s \left\{ \frac{2k_\alpha r_w}{h_f k_f} \left(\frac{\eta_f}{r_w^2} \right)^{1-\alpha} \frac{r_{mD} \sqrt{\beta_m}}{Tan h \left(\sqrt{\beta_m} r_{mD} \right)} s^{-\alpha} + 1 \right\} \bar{p}_{fD} = 0$$

Verification & Results

• Verification vs. Tri-linear model

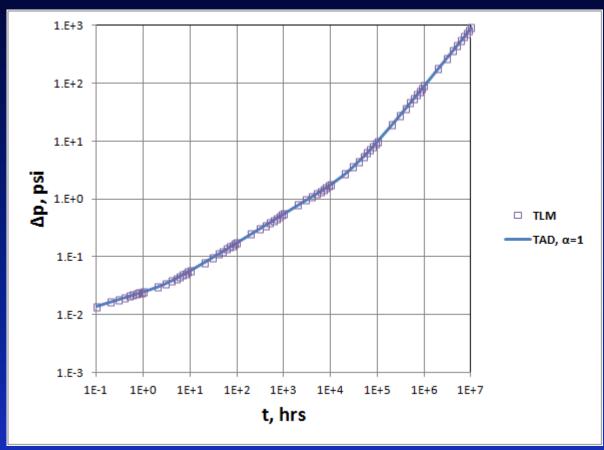
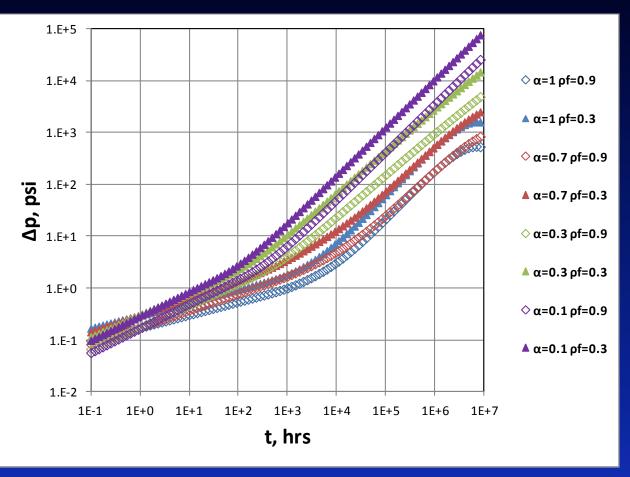



Figure 3: Verification with Tri-linear Model

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Verification & Results

- Results:
- Sensitivity α $\alpha = \{1, 0.7, 0.3, 0.1\}$ $\rho_f = \{0.9 \text{ and } 0.3\}$

Figure 4: Sensitivity Cases - α

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Verification & Results

- Results:
- Sensitivity ρ_f $\rho_f = \{0.9, 0.6, 0.3, 0.03\}$ $\alpha = \{1 \text{ and } 0.1\}$

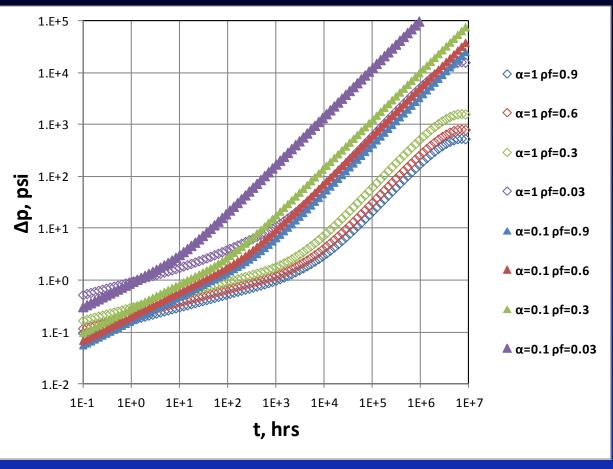


Figure 5: Sensitivity Cases - ρ_f

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Conclusion

- Modeling fluid flow using anomalous diffusion has not been fully explored.
- Providing alternatives to dual-porosity models for unconventional reservoirs.
- Applying fractals and anomalous diffusion models to unconventional reservoirs (d_f) .

Conclusion

 Impact on petrophysical interpretations, pressure transient analysis, description of natural and hydraulic fractures, numerical simulation models and phase behavior studies.

Thank you

References

 Kazemi, H. 1969. Pressure Transient Analysis of Naturally Fractured Reservoirs with Uniform Fracture Distribution, SPEJ 9 (4): 451 – 462. SPE 2516-A.

 Ozkan, E., Brown, M., Raghavan, R., and Kazemi, H. 2009. Comparison of Fractured Horizontal-Well Performance in Conventional and Unconventional Reservoirs, SPE 121290, SPE Western Regional Meeting, 24–26 March 2009, San Jose, California.

• Ozkan, E. 2011. On Non-Darcy Flow in Porous Media: Modeling Gas Slippage in Nano-pores. SIAM Mathematical & Computational Issues in the Geosciences Meeting, 21-24 March 2011, Long Beach, California.

• Raghavan, R. and Chen, C. 2013. Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity, Journal of Petroleum Science and Engineering, 109, 133-143.

References

 U.S. Energy Information Administration (EIA). 2014. Natural Gas, US Shale Production Database, http://www.eia.gov/dnav/ng/hist/ res_epg0_r5302_nus_bcfa.htm (Accessed 28 June 2014).

