

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

UREP Spring 2017 Advisory Board Meeting

SUPERPOSITION TIME FOR HIGHLY COMPRESSIBLE LINEAR FLOW

Erdal Ozkan

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

Objectives

- Express 1D flow toward a fractured well in a tight-gas reservoir with strong variability of gas viscosity and compressibility in the form of a perturbation problem.
- Obtain an approximate analytical solution in terms of a series of Green's function solutions to a set of linear problems, which permits term-by-term term application of the superposition principle.
- Derive an approximate superposition time expression for variable rate problems in unconventional gas wells with strong variability of gas viscosity and compressibility

1D gas flow in porous media

$$\frac{\partial}{\partial y} \left(\frac{p}{z} \frac{k}{\mu} \frac{\partial p}{\partial y} \right) = \frac{\phi c}{2.637 \times 10^{-4}} \frac{p}{z} \frac{\partial p}{\partial t}$$

$$m(p) = \int_{p_b}^p \frac{2p'}{z\mu} dp'$$

$$\frac{\partial^2 \Delta m}{\partial y^2} = \frac{1}{\eta} \frac{\partial \Delta m}{\partial t}$$

$$\eta = \frac{2.637 \times 10^{-4} k}{\phi \mu c}$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECTAdvisory Board Meeting, Nov. 3, 2017, Golden, Colorado

Mathematical Formulation

Perturbation problem

$$\frac{\partial^2 \Delta m}{\partial y^2} = (1 + \varepsilon \omega) \frac{1}{\eta_i} \frac{\partial \Delta m}{\partial t}$$

$$\omega = \omega(y, t) = \frac{\eta_i - \eta}{\eta} = \frac{(\phi \mu c)_i - (\phi \mu c)}{(\phi \mu c)}$$

$$\epsilon = \begin{cases} 0 & \textit{Linear problem} \\ 1 & \textit{Non-Linear problem} \end{cases}$$

$$\eta_i = \frac{2.637 \times 10^{-4} k}{(\phi \mu c)_i}$$

Perturbation problem

$$\frac{\partial^2 \Delta m}{\partial y^2} = (1 + \varepsilon \omega) \frac{1}{\eta_i} \frac{\partial \Delta m}{\partial t}$$

$$\Delta m = \Delta m^0 + \sum_{k=1}^{\infty} \varepsilon^k \Delta m^k$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

Ę

Mathematical Formulation

Perturbation problem

$$\begin{split} \left(\frac{\partial^2 \Delta m^0}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m^0}{\partial t}\right) \\ + \varepsilon^1 \left(\frac{\partial^2 \Delta m^1}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m^1}{\partial t} - \frac{\omega^0}{\eta_i} \frac{\partial \Delta m^0}{\partial t}\right) \\ + \varepsilon^2 \left(\frac{\partial^2 \Delta m^2}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m^2}{\partial t} - \frac{\omega^1}{\eta_i} \frac{\partial \Delta m^1}{\partial t}\right) + \cdots \\ + \varepsilon^k \left(\frac{\partial^2 \Delta m^k}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m^k}{\partial t} - \frac{\omega^{k-1}}{\eta_i} \frac{\partial \Delta m^{k-1}}{\partial t}\right) + \cdots = 0 \end{split}$$

 Δm^0 , Δm^1 , Δm^2 , ..., Δm^k , ... are the solutions of 0^{th} , 1^{st} , 2^{nd} , ..., k^{th} order perturbation problems:

Approximate solution:

$$\begin{split} \Delta m(0,t) &\approx \frac{1422T\sqrt{\pi\eta_i}}{x_f h k} t_S \\ t_S &= q(\tilde{t}_0) \left[1 - \frac{\omega^0(0,\tilde{t}_0)}{\sqrt{2}} \right] \sqrt{t} \\ &+ \sum_{j=1}^{M-1} \left[q(\tilde{t}_j) - q(\tilde{t}_{j-1}) \right] \left[1 - \frac{\omega^0(0,\tilde{t}_j)}{\sqrt{2}} \right] \sqrt{t - t_j} \end{split}$$

When the variation of viscosity-compressibility product is negligible

$$t_s = q(\tilde{t}_0)\sqrt{t} + \sum_{j=1}^{M-1} \left[q(\tilde{t}_j) - q(\tilde{t}_{j-1})\right]\sqrt{t - t_j}$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

7

Mathematical Formulation

Field example:

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECTAdvisory Board Meeting, Nov. 3, 2017, Golden, Colorado

8

Back-up slides UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

Perturbation problem

0th order perturbation problem:

$$\frac{\partial \Delta m}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m}{\partial t} = 0$$

$$\Delta m^0(y, t \to 0) = 0$$

$$\Delta m^0(y \to \infty, t) = 0$$

$$\left(\frac{\partial \Delta m^0}{\partial y}\right)_{y=0} = -\frac{1422\pi q(t)T}{2x_f hk}$$

1st order perturbation problem:

$$\begin{split} \frac{\partial^2 \Delta m^1}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m^1}{\partial t} - \frac{\omega^0}{\eta_i} \frac{\partial \Delta m^0}{\partial t} &= 0 \\ \Delta m^1(y, t \to 0) &= 0 \\ \Delta m^1(y \to \infty, t) &= 0 \\ \left(\frac{\partial \Delta m^1}{\partial y}\right)_{y=0} &= 0 \end{split}$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

Mathematical Formulation

Perturbation problem

2nd order perturbation problem:

$$\begin{split} \frac{\partial^2 \Delta m^2}{\partial y^2} - \frac{1}{\eta_i} \frac{\partial \Delta m^2}{\partial t} - \frac{\omega^1}{\eta_i} \frac{\partial \Delta m^1}{\partial t} &= 0 \\ \Delta m^2(y, t \to 0) &= 0 \\ \Delta m^2(y \to \infty, t) &= 0 \\ \left(\frac{\partial \Delta m^2}{\partial y}\right)_{y=0} &= 0 \end{split}$$

kth order perturbation problem:

$$\frac{\partial^{2} \Delta m^{k}}{\partial y^{2}} - \frac{1}{\eta_{i}} \frac{\partial \Delta m^{k}}{\partial t} - \frac{\omega^{k-1}}{\eta_{i}} \frac{\partial \Delta m^{k-1}}{\partial t} = 0$$

$$\Delta m^{k}(y, t \to 0) = 0$$

$$\Delta m^{k}(y \to \infty, t) = 0$$

$$\left(\frac{\partial \Delta m^{k}}{\partial y}\right)_{y=0} = 0$$

Green's function solutions of the perturbation problem

0th order perturbation problem:

$$\Delta m^{0}(y,t) = \frac{1422\sqrt{\pi\eta_{i}}T}{2x_{f}hk} \int_{0}^{t} \frac{q(t')}{\sqrt{t-t'}} exp\left[-\frac{y^{2}}{4\eta_{i}(t-t')}\right] dt'$$

1st order perturbation problem:

$$\Delta m^{1}(y,t) = \frac{1422T}{2x_{f}hk} \int_{0}^{t} q(t') \int_{0}^{\infty} \frac{\omega^{0}(y',t')}{(t-t')} exp\left[-\frac{(y-y')^{2}+y'^{2}}{4\eta_{i}(t-t')}\right] dy' dt'$$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

13

Mathematical Formulation

Truncated perturbation solution:

$$\Delta m = \Delta m^0 + \sum_{k=1}^{\infty} \varepsilon^k \Delta m^k \approx \Delta m^0 + \Delta m^1$$

$$= \frac{1422T}{2x_f hk} \left\{ \int_0^t \frac{q(t')\sqrt{\pi\eta_i}}{\sqrt{t - t'}} \exp\left[-\frac{y^2}{4\eta_i(t - t')}\right] dt' + \int_0^t q(t') \int_0^{\infty} \frac{\omega^0(y', t')}{(t - t')} \exp\left[-\frac{(y - y')^2 + y'^2}{4\eta_i(t - t')}\right] dy' dt' \right\}$$

Discretized truncated perturbation solution:

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, Nov. 3, 2017, Golden, Colorado

1