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Summary

This report presents the results of Phase 1 of the Unconventional Reservoir Engineering
Project (UREP) Consortium, which was completed on Sept. 30, 2014. More information
about UREP can be found on http://petroleum.mines.edu/research/urep/. Members
can access this report, find additional details about the research projects, and download
UREP publications under the “Members Only” tab of the UREP web page (if you do not
have the password or need to receive a new password to access the Members Only
section of the UREP web page, please contact us; eclayton@mines.eduy,
eozkan@mines.edu, and xyin@mines.edu).

UREP Consortium was formed to focus on the unconventional aspects of
unconventional reservoirs in October 2012. Its objective is to contribute to the long-
term, sustainable production from unconventional reservoirs, including but not limited
to nanoporous resource plays, such as shale-gas, tight-oil, liquids-rich formations, and
tight carbonates.

Phase 1 of the consortium has been supported by 12 members: Baker Hughes, BHP
Billiton, Cimarex Energy, ConocoPhillips, EOG Resources, Hess Corporation, Kappa
Engineering, Noble Energy, Petrobras, Saudi Aramco, Shell, and Total. During Phase 1,
we have enjoyed the sub-contractual support of our affiliates, Dr. R. Raghavan and
NITEC, LLC (C. Ozgen, Dr. T. Firincioglu, B. Savage, C. Karacaer, and ]. Hopkins). We have
also started collaborating with Craft-Tech (Dr. A. Hosangadi, Dr. J. Busby, Dr. D.
VanGilder, and Dr. |. L. Papp).

During Phase 1, two faculty members (Drs. E. Ozkan and X. Yin), one research associate
(Dr. H. Sarak), one research administrator (Ms. E. Clayton), and 15 graduate students
were involved in the project. One PhD and four MS students graduated from the UREP
group over the past two years.

The funding for the first two years (Phase 1) of UREP was approximately $1M. Of this
budget, approximately 48% has been spent on sub-contracts, 23% on students, 13% on
faculty and research associate, 1% on travel, and 5% on miscellaneous expenses.
Indirect cost (overhead) paid to CSM is close to 10% of the total budget.

Phase 1 of the Consortium has already laid the foundation for nanoporous reservoir
engineering and reached important milestones toward the development of new tools
and practices. Phase 2 will continue, fundamentally, along the directions established
during Phase 1. In addition to the theoretical and mathematical treatments started in
Phase 1, emphasis will also be put on nanofluidics experiments in Phase 2.



Introduction

The focus of UREP is flow in tight unconventional oil and natural gas reservoirs. The
general objective is to achieve a more complete reservoir engineering understanding
and develop more appropriate reservoir engineering tools and practices for these
reservoirs. This objective covers the entire spectrum of reservoir engineering research
of nanoporous, nanodarcy-permeability, and microfractured unconventional-
formations. Under scrutiny are the discerning physical characteristics, non-Darcy flow
mechanisms, capillary- and surface-force effects in confinement, multi-phase flow in
nanoporous media, and new fluid exchange mechanisms between fractures and the
rock matrix. Development of reservoir models, analysis techniques, and prediction tools
are also part of the research spectrum.

The research focus of UREP is divided into five project areas. Figures 1 and 2 show the
project areas and the associated tasks and objectives. In this report, the results
obtained in Phase 1 will be summarized and extensions into Phase 2 will be noted.
Additional UREP reports, papers, presentations, and student theses and dissertations
mentioned in this report can be found under the “Members Only” tab of the UREP web
page: on http://petroleum.mines.edu/research /urep/.

PRU * TASKS

* Rock-fluid interactions in nano-pores
* Flow and transport mechanisms

* Fluid flow between fractures and nano-porous rack matrix
* Models of flow from nano-porous matrix to multi-level fractures

* Flow and transport mechanisms from source rock to producing layers
* Production models for source-rock supported liquid-rich reservoirs
* Flow characteristics and analysis of well performance

* Black-oil simulation of unconventional, liquid-rich reservoirs
* Unconventional reservoir simulation in n-porosity environment

* PTA and RTA in unconventional reservoirs
* Interference models for wells in unconventional reservoirs
* Dedline-curve-analysis methods for unconventional reservoirs

Figure 1 - UREP Projects and associated tasks
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PROJECT 4 * Progressively incorporate the results of the UREP research projects
Simulation of Flow and Transport in and new findings into a numerical unconventional-reservoir
Fractured Nano-Porous Reservoirs simulator developed by NITEC
PROJECT 5
Analysis and Prediction of Well * Develop and improve models and interpretation methods for
Performance in Unconventional pressure- and rate-transient data and long-term production
performance to help reservoir management

Reservoirs

Figure 2 - Objectives of UREP projects



Technical Summaries

Technical summaries of the research undertaken during Phase 1 of UREP are provided
below.

PROJECT 1: Flow and Transport of Hydrocarbons in Nano-Porous
Reservoirs

Objectives: Develop a more comprehensive understanding and perception of flow and
transport in nano-porous reservoir rocks to form the basis of unconventional
reservoir engineering tools and practices. Understand mechanisms
associated with n-pore size environments.

Tasks:

e Rock-fluid interactions in nano-pores (continuing into Phase 2)
¢ Flow and transport mechanisms (continuing into Phase 2)

Deliverables:

¢ Flow and transport mechanisms and constitutive relationships
o Filtration through nanopore throats (Phase 1 results complete; more
results in Phase 2)
o Anomalous-diffusion models in tight, fractured, unconventional
reservoirs (Phase 1 results complete; more results in Phase 2)
e Chemical equilibrium for black-oil hydrodynamic simulator
o Bubble-point suppression due to pore proximity (Phase 1 results
complete; experimental work continuing into Phase 2)
o Condensation-point enhancement due to pore proximity (initial results
being delivered; more theoretical and experimental results in Phase 2)
o Phase behavior results from nanofluidics experiments (initial results
being delivered; experimental work continuing into Phase 2)
¢ Principles of characterization and upscaling (partial results being delivered; work
continuing into Phase 2)

Summary of Project 1 Results:

1.1. Bubble-point suppression due to pore proximity

The average pore size in unconventional, liquids-rich reservoirs is estimated to be less
than 100 nm. At this nano-pore scale, capillary forces play an important role on phase
behavior that is not considered in conventional PVT studies.

The difference between the gas and liquid pressure at equilibrium is given by

pgas _pliquid = pc +HS (1)



where p_is the capillary pressure and I is the sum of the surface forces. Studies show

that the magnitude of the bubble point suppression is more than the capillary pressure
and may amount to hundreds of psi. In PVT cell experiments, capillary pressure and
surface forces are negligible (because of the size of the cell, the curvature of the liquid-
gas interface is large and the surface-fluid interactions are relatively negligible). As
shown in Fig. 3, for negligible surface forces, if we consider the equality of chemical
potentials at bubble point, the bubble-point pressure defined in a PVT cell is different
from the bubble-point pressure in pore confinement by an amount defined by the
capillary pressure and an excess suppression imposed by the size of the pore.
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Figure 3 - Chemical potentials of liquid and gas as a function of pressure (Udell, 1982)

Effect of confinement on phase behavior of black-oil fluids manifests itself as bubble
point pressure suppression (Fig. 4), extension of the undersaturated portion of the
formation volume factor curve, and alteration of the equilibrium gas composition.
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Figure 4 - Phase diagram shift due to pore confinement of a Bakken fluid sample

The bubble-point suppression phenomenon can be modeled through compositional
solution of the phase behavior at differing gas- and oil-phase pressure values that are
due to capillary pressure. However, the use of compositional simulators is not much
desirable in unconventional reservoirs and black-oil simulators cannot perform the
compositional phase behavior calculations to estimate the total bubble-point
suppression due to confinement.

In this project, a correlation has been developed to expresses the bubble point pressure
suppression as a function of the capillary pressure, p., and the solution gas oil ratio, Rs.
As shown in Fig.3, the magnitude of the bubble-point suppression is equal to the sum of
the capillary pressure for the given pore size and the excess suppression. The capillary
pressure can be obtained from the pore size and surface tension information between
the gas and liquid. In this study, the excess suppression amount has been correlated as a
function of the solution gas-oil ratio as follows:

Excess SUPPIession __, 1107 g2 +9x 10 R, —1.022x10"" (2)

Total Suppression

Figure 5 shows the data used in the correlation and the quadratic function in Eq. 2 is the
best fit to the data. Both p. and Rs are the standard input parameters for black-oil
simulators and are obtained through conventional PVT measurements.
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Figure 5 - Bubble-point suppression correlation

The correlation developed in this project enables us to incorporate bubble-point
suppression effect into black-oil simulations of production from liquids-rich, tight
formations. The correlation was developed based on the fluid samples from three
liquids-rich, unconventional plays at different saturation pressures and compositions.
To use the correlation, a modified black oil simulator, NITEC-COZSim-UREP, which can
handle PVT data at different oil- and gas-phase pressures has also been developed. The
source code of the black oil simulator used in this study was modified from the NITEC-
COZSim-UREP simulator to include the total bubble-point suppression into the PVT
calculations. The impact of the confined phase behavior on flow was quantified through
simulation runs. Figure 6 shows example results of the NITEC-COZSim-UREP simulator
indicating the effect of pore proximity on phase behavior.

The modified black-oil simulation results showed that;

e The quality of the correlation was very good for the samples that the correlation
was based on. The normalization of the excess suppression using the total
suppression was necessary to handle the impact of capillary pressure difference
for each pore-radius due to different interfacial tension values at different
compositions and temperatures.
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Figure 6 - Oil and gas production and GOR simulations from NITEC-COZSim-UREP
simulator for negligible capillary pressure (Pc =0.0 psi) and an assumed capillary

pressure distribution (Pc distributed)

The gas saturation profiles in the reservoir and the GOR behavior of the wells
differ from that of the conventional approach (no confinement impact on phase
behavior) when confinement is included in the phase property calculations. The
difference manifests itself as lower GOR values and later gas breakthrough for
the wells and different gas saturation values for similar pressures in the
reservoir.

The confined fluid behavior has a positive impact on oil production for black-oil
reservoirs. The improvement in oil production occurs due to later breakthrough
of the gas and the extension of the undersaturated property range of the oil; both
as a result of the bubble-point suppression.

The impact on production can be more drastic when (normally) distributed gas-
oil capillary pressure values are assigned to represent the confinement in the
reservoir. This impact manifests itself as gas saturation build up for some grid
blocks with low gas-oil capillary pressure (lower bubble-point suppression) that
are surrounded by zero gas saturation grid blocks (higher bubble-point



suppression). In some grid blocks, the gas comes out of the solution sooner than
the surrounding grid blocks due to different suppression levels. Until the gas
phase has a continuous path to the well location, it builds up in the grid block,
yet cannot be produced. This behavior implies that it is not just the magnitude,
but also the distribution of the bubble point suppression due to non-uniform
capillary pressure (or pore size) distribution can influence the multi-phase flow.

The results of the research on bubble-point suppression in pore proximity have been
presented in the following studies:

e Firincioglu, T., Ozkan, E., and Ozgen, C.: "Thermodynamics of Multiphase Flow in
Unconventional Liquids-Rich Reservoirs," paper SPE 159869 to be presented at
the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas,
USA, 8-10 October 2012.

e Firincioglu T. Ozgen C. Ozkan E.. "An Excess-Bubble-Point-Suppression
Correlation for Black Oil Simulation of Nano-Porous Unconventional Oil
Reservoirs ", paper SPE 166459 presented at the SPE Annual Technical
Conference and Exhibition held in New Orleans, Louisiana, USA, 30 September-2
October 2013.

e Firincioglu T.. “Bubble Point Suppression in Unconventional Liquids Rich
Reservoirs and Its Impact on Oil Production” PhD Dissertation, Petroleum
Engineering Department, Colorado School of Mines, 2013.

1.2. Condensation-point enhancement in pore proximity

The objective of this project is to extend the research on bubble-point pressure
suppression to condensation-point enhancement to complete the study of phase
behavior in pore proximity. Because of our improved experimental capabilities, this
research combines the experimental results with analytical simulations. The
experimental studies are intended to improve EOS relations used in reservoir
simulations by adding the effect of confinement. Analytical studies incorporate
corrections to EOS relations by including the effects of capillary pressure and surface
forces.

Experimental Study: Two sets of experiments are planned. The first set includes
pressurizing and depressurizing propane gas inside a nano-fluidic chip at room
temperature and recording the pressure as a function of volume. Comparison of the
pressure change as a function of volume recorded during the experiments with
different nano-fluidic chip sizes to that from bulk (PVT cell) data will provide
information about the effect of pore proximity on pressure versus volume behavior. In
the second set of experiments, effect of temperature is also taken into consideration;
that is, the first set of experiments is repeated at different temperatures each time.
Currently, experimental study is at the stage of testing and calibrating. The results will
be reported during the second phase of the consortium research.

The nano-fluidic chips used in the experiments (Fig. 7) are made of silica plates bonded
to glass in a series of fabrication steps.



1- Either parallel or random patterns of nano-channels are etched onto a mask with
electron beam lithography.

2- Nano-channels on a mask are transferred onto a silicon wafer with a reactive
ion etch.

3- The micro-channels are patterned into the silicon wafer and etched to contact
the endpoints of nano-channel array and create large area to interface with the
outside world.

4- Through-holes are made in the silicon wafer at the endpoints of micro-channels
for inlet and outlet ports.

5- Finally the silicon wafer is oxidized and is bonded to a thin borosilicate glass
wafer via anodic bonding.

I

10um wide X 10um

Figure 7 - Nano-fluidic chips used in the experiments

During the experiments, the nano-fluidic chip is connected to a hand pump via series of
micro and macro tubes (Fig. 8). Hand pump is also connected to the propane tank
(99.99% purity). A pressure gauge on the pump shows the pressure and the 500-nm
filter removes the contaminants if any.

Hydrocarbon

Hydraulic
pump

Figure 8 - Pump and nano-fluidic chip connections



The experimental setup has the ability to inject the gas through either one or two inlets
of nano-chip. In order to make a closed system and pressurize the gas, the outlet ports
should be closed. Turning the pump hands clockwise volume decreases and pressure
rises. Counter clockwise turning of the pump hand results in pressure reduction and gas
expansion.

After condensing the propane inside the chip all inlet/outlet ports open to atmosphere
but because of high capillary pressure inside the chip the condensation does not
vaporize and remains in the chip. This causes problems in the cleanup and reuse of the
chips for the subsequent experiments. One option to remove the condensate is to heat
the chip to high temperatures for extended periods. Another option is to blow out the
condensate in the chip by injecting a high-pressure gas (such as air, CO2, N2, etc.); but
this also takes a long time.

Analytical Study: For the analytical study of the effect of pore proximity on condensation
pressure, flash calculations are performed by the Peng-Robinson (PR) EOS. The PR EOS
is a cubic relation because the compressibility factor, Z, is a solution of the following
cubic equation for a multicomponent mixture

7’—(1-B)Z*+(A-2B-3B*)—(AB-B*-B*)=0 (3)

where
Vp

7Z=—r 4
RT (4)
ap

T RT ()

and
bp

B=—"FXF 6
RT (6)

In Eqgs. 4 through 6, V'is the molar volume, R is the universal gas constant, and 7 is the
temperature. The terms a and b In Egs. 5 and 6 are given by

a= Z‘Z‘xi.xj(l—lci/)(aiczj)(l5 (7)
i

and

b= inbi. (8)

where

R*T?
a = 0.45724(—”‘]051. 9)
pri



and

RT.

b= 0.07780(—”J (10)
pri
In Egs. 9 and 10,

2
o, =[1+m(1-1")] (11)
0.37464+1.54226m, — O.2699260i2 o, <0.5215 (12)
" 10.3796+1.48 —0.16440 > +0.01666w°  Otherwise

o, is the acentric factor, and T, and py are the reduced temperature and pressure,
respectively.

In the above formulation, we use the mixing and combining rules. The vapor and liquid
mole fractions, x; and y,, are related by

vy, =Kx, (13)
where K; is the equilibrium constant. At equilibrium, we can show that

B P

g (14)
‘LLi po

where u’ and u? are the chemical potentials of the component i in the oil and vapor

phases, respectively. Neglecting surface forces, the pressures of the gas and oil phases
differ by an amount equal to the capillary pressure, p.:

P,—P,=D, (15)

If capillary pressure is not negligible, then from Egs. 14 and 15, we have

K=bile B P (16)
uip, M\ p,tp,

To incorporate the effect of pore proximity into the PR EOS, we also need to account for
the shift in the critical properties due to pore proximity by the following relations
(Zarragoicoechea & Kuz, 2004):

2
@ "2 094097 02415 L (17)
:ch rp rp

and

2
P
o =0.94091—0.z415[1] (18)
r

7

ch P P



where

1/3
T
y = 0.244[4’} (19)
P

ch

1, is the pore radius, y is the Lennard-Jones size parameter, and the subscripts, c¢b and
cp stand for bulk and pore critical properties, respectively.

A flash calculation algorithm is being constructed and tested for the formulation of the
PR EOS as described above. The results of this study will be available during Phase 2 of
the consortium.

1.3 Experimental study of phase behavior in nanofluidics and modeling of the effect of
pore size distribution

Petrophysical studies have confirmed that pore sizes of many shale and tight oil and gas
reservoirs are in the range of nanometers. In these pores, the phase behavior of
hydrocarbon mixture, affected by the capillary pressure and the surface forces, are
different from that characterized in PVT cells. Many existing phase behavior models use
a single pore size. This research investigates the effect of a pore size distribution on the
vapor-liquid equilibrium of alkane mixtures by experiments and modeling. In this
report, we elaborate on the experimental findings and the implications, as has been
presented in SPE 169581. Modeling of depressurization of fluids confined in pores with
discretized pore size distribution, presented in SPE 170894, is briefly captured by only
mentioning the main conclusions.

In the experiments, we used a nanofluidic device to visualize phase transitions of pure
alkane and an alkane mixture due to evaporation. As shown in Figure 7, the nanofluidic
device consists of two parallel microchannels perpendicularly connected by twenty-one
nanochannels. The dimensions of the micro- and nanochannels are 10 pum wide by 10
um deep and 5 um wide by 100 nm deep, respectively. The volume of the microchannels
to that of the nanochannels is approximately 38:1, i.e. the volume fraction of the
nanochannels in the entire pore volume is 2.56%.

The fluids tested include pure n-pentane and a ternary hydrocarbon mixture consisting
of 4.5 mol% n-butane, 15.5 mol% iso-butane and 80.0 mol% n-octane. The composition
of the ternary hydrocarbon mixture is chosen from the phase envelope in Figure 9, as
denoted by the black circle below the two-phase region between the cross markers. At
the atmospheric pressure (here, it is taken as 8.5 x 104 Pa or 12.4 psia due to the
elevation of the city of Golden, Colorado) and below 298 °K (76.7 °F) it should be stable
in the liquid form. But both liquids are very close to their respective boiling and bubble
points; they are therefore highly volatile.
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Figure 9 - Ternary diagram of hydrocarbon mixture in microchannels at 298 °K
(76.7°F).

As the experimental temperature rises to 345 °K (161 °F), the liquid mixture in the
microchannels should flash into two phases while that in the nanochannels should
remain to be a liquid because of the shifted bubble and dew point lines due to the
capillary pressure. The ternary diagram of the mixture at 345 °K and the feed point are
shown in Figure 10, in which the region contained by the asterisk markers is the two-
phase zone for the mixture in the nanochannels. The area between the triangular
markers is the two-phase region for the ternary mixture confined by the microchannels,
which is very close to the phase envelope of the mixture in a PVT cell. The method used
to predict the effect of confinement on the phase envelopes, which follows that by
Brusilovsky (1992) and Shapiro and Stenby (2001) and is identical to that in Firincioglu
etal. (2012, 2013), is not presented here for brevity.
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Figure 10 - Ternary diagram of hydrocarbon mixture in micro- and nanochannels at
345 °K (161°F).

A lighter was used as a container to prepare the ternary mixture with desired
composition. Air was firstly displaced out of the lighter chamber by butane vapor that
has a fixed mole ratio (0.29:1; n-butane vs. i-butane). Then, liquid octane was
transferred into the lighter and the weight difference was measured. Finally, butane
vapor was injected into the lighter chamber to achieve the target molar composition of
the ternary mixture.

At the atmospheric pressure in Golden, Colorado, and controlled temperature of 298 °K
(76.7 °F), hydrocarbon liquids were loaded into the interconnected networks from the
ports attached to the ends of the microchannels. By gradually heating up the system
using a light bulb, vapor-liquid interfaces moved as hydrocarbon evaporated and left
the channels. The phenomena were directly observed through an optical microscope
and captured by a digital camera connected to the microscope. A thermalcouple was
attached to the surface of the nanofluidic device to record the temperature.

Figure 11 shows the consecutive images taken with a time-lapse interval of 0.05 second
for the evaporation of pure n-pentane (boiling point is 309 °K) at the atmospheric
pressure and 298 °K. Note that as this temperature is below the boiling point,
vaporization was driven by the evaporation of the n-pentane through the open ports of
the microchannels. Since the liquid n-pentane is a wetting fluid relative to its vapor with
respect to the surface of the device, as expected from the Kelvin’s equation, evaporation
first took place in the microchannels. The interfaces did not progress into the nano-



channels until the evaporation in the micro-channels was complete. This shows that the
nanoconfinement in the device compared to the dimension of the microchannels (100
nm vs. 10 pm) generated a distinguishable contrast in capillarity that determined the
sequence of evaporation. Additionally, the evaporation of n-pentane was very rapid,
which indicates that the mass transfer resistance to evaporation was very small.

Il

Figure 11 - Three consecutive images taken during the evaporation of pure n-pentane
in the nanofluidic device. Left: n-pentane in two microchannels is evaporated, leaving
the nanochannels filled with liquid; Middle: n-pentane in some of the nanochannels
evaporated; Right: n-pentane in both micro- and nanochannels totally evaporated.

The vaporization of the ternary hydrocarbon mixture, as shown in Figure 12, is very
different. Although the liquid started to vaporize in the microchannels first, as expected
because the liquid therein crosses the bubble point line first with increasing
temperature, the progression of the meniscus slowed down considerably with time and
could not progress into the nanochannels at 345 °K (161°F), a temperature much higher
than the bubble point temperature of the initial mixture. Instead, the meniscus stopped
at a location shown in Figure 12. The reason is that the liberation of lighter components
from the liquid phase to the gas phase in the microchannels increases the apparent
molecular weight of the remaining liquid as well as its bubble point.

Figure 12 - Three images taken during the vaporization of the ternary mixture in the
chip. Left: Micro- and nanochannels filled with air; Middle: Micro- and nanochannels
filled with the ternary hydrocarbon mixture; Right: Vaporization of the ternary mixture
stopped in one of the microchannels at 345 °K.



A Peng-Robinson equation of state (Peng and Robinson 1976) based flash calculation
procedure that accommodates the capillary pressure was previously developed by
Brusilovsky (1992) and Shapiro and Stenby (2001). It is implemented here to model the
nanoconfinement effect on the hydrocarbon phase behavior. The pressures of the gas
and the liquid phases are differentiated by the capillary pressure, which is calculated
using the sizes of pores (micro- and nanochannels), an assumed contact angle 6 = 30°,
and an interfacial tension (IFT) o that is estimated with the parachor correlation
(Weinaug and Katz, 1943). The critical properties, acentric factors, and binary
interaction parameters are presented in Table 1.

Table 1 - Critical properties, acentric factors and binary interaction parameters.

Parameters iso-butane | n-butane n-octane

T (°K) 408 425 569

P. (MPa) 3.65 3.80 2.49

W; 0.1770 0.2002 0.3996
iso-butane 0 0 0.026

8 n-butane 0 0 0.012
n-octane 0.026 0.012 0

The classic flash calculation procedure, before taking into account the capillary
pressure, was validated by calculating the PT phase envelope of a ternary mixture
containing 40 mol% n-butane, 20 mol% n-petane and 40 mol% n-octane. Properties of
the three components are listed in Table 2. Figure 13 is obtained with the Eclipse-PVTi
module, and Figure 14 is the PT phase diagram calculated with the flash calculation
procedure that we developed in the absence of the capillary pressure. It is clear that
both the bubble point line and the dew pont line agree very well with Eclipse-PVTi in
the entire temperature range, indicating satisfactory accuracy of our procedure.
Additionally, note that the Eclipse-PVTi ran into severe fluctuations between 480 and
520 °K for the bubble point calculation, which is a common stability issue encountered
in the vicinity of the critical point. On the contrary, our procedure achieved perfectly
smooth transitions in this sensitive area, demonstrating excellent robustness and
reliability.

Table 2 - Critical properties, acentric factors and binary interaction parameters.

Parameters n-butane | n-pentane | n-octane

T (°K) 425 470 569

P. (MPa) 3.80 3.37 2.49

Wj 0.2002 0.2515 0.3996
iso-butane | 0 0.017 0.012

8 n-pentane | 0.017 0 0
n-octane 0.012 0 0




As indicated by the ternary phase diagram in Figure 10, the liquid mixture in the
microchannels should flash into two phases when the experimental temperature rises
to 345 °K (161°F); however, the meniscus just stopped in front of the smaller
microchannel and was not able to propagate into it with strong and sustained heating.
Our hypothesis is that besides the larger nanoconfinement the smaller channel has on
the hydrocarbon mixture, preferential vaporization of lighter components from the
system increased the apparent molecular weight of the remaining fluid, consequently
raising its bubble point temperature. To verify this hypothesis, the heating process of
the ternary mixture is modeled as a constant-pressure, constant-composition expansion
from the room temperature to the final experimental temperature of 345 °K (161°F), at
the atmospheric pressure in Golden, Colorado. The data before and after the simulated
expansion are listed in Table 3.
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Figure 13 - Phase evelope of 40 mol% n-butane, 20 mol% n-petane and 40 mol% n-
octane generated by Eclipse-PVTi.
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Figure 14 - Phase evelope of 40 mol% n-butane, 20 mol% n-petane and 40 mol% n-
octane generated by our classic flash calculation procedure.

Table 3 - Simulation parameters before and after flash calculation at constant pressure.

Parameters Before flash calculation  After flash calculation
Temperature (°K) 298 345

Pressure (Pa) 85260 85260

Liquid (iC4-nC4-Cs, mol%) 0.1547 0.0453 0.8000 0.0488 0.0187 0.9325
Vapor (iC4-nCs-Cs, mol%) 0 0 0 0.6435 0.1682 0.1883
Residual liquid (mol%) 100.00 82.20

Residual liquid (vol%) 100.00 76.52

[FT (mN/m) -- 16.24

Pc in micro-channel (kPa) -- 3.38

P.in nano-channel (kPa) -- 286.91

Tp in micro-channel (°K) 303.45 345.00

Ty in nano-channel (°K) 363.28 404.00




The vapor and liquid compositions after expansion demonstrates that the lighter
components are preferentially released into the vapor phase, leaving a much heavier
liquid phase with 93.2 mol% n-octane behind. Also for the feeding composition used in
this experiment, the remaining liquid accounts for as high as 76.5 vol% after the flash
calculation. Because the volume fraction of the nanochannels is only 2.56% of the total
pore volume, the bulk of the micro- and nanochannels is still occupied by the liquid
phase. This calculated volume fraction of remaining liquid is quantitatively consistent
with the experimental observation that only one of four large microchannels was
evaporated, leaving more than 75 vol% of the total volume of the micro- and
nanochannel network saturated with liquid. Using the calculated IFT, the capillary
pressure values are evaluated for the cases where a bubble is generated in the micro- or
nanochannels. The capillary pressure that would act on a bubble generated in the nano-
channel is nearly two orders of magnitude higher than that would act on a bubble
generated in the micro-channel. This calculation explains the observations that for the
ternary mixture, vapor bubble was also first formed in the microchannel.

These experiments were not conducted within an enclosed volume and with a fixed
temperature; hence, strictly they cannot be directly compared with constant-
composition phase equilibrium calculations. However, qualitative conclusions can still
be drawn for phase change of hydrocarbon mixtures in porous media with pores of
different sizes. On one hand, phase transition in porous media follows the sequence
dictated by the pore sizes and the strength of capillarity. This is demonstrated by the
sequence of vaporization of pure n-pentane in the nanofluidic chip. Another conclusion
that is supported by modeling is that, for petroleum mixtures, preceding phase change
alters the composition of the remaining fluids, and in turn, affects the point of the next
phase transition. This is indicated by the slowing down of the propagation of the vapor-
liquid interface during the vaporization of the ternary mixture.

With these main conclusions, in SPE 170894, the modeling procedure was applied to a
set of realistic pore size distribution data with assumed mixture compositions
representing typical oil and condensate to predict the state of fluid phase and
composition within the pore size distribution. The results showed that;

e For light oil, during depressurization, the foregoing vaporization increases the
apparent molecular weight of the liquid residing in smaller pores and in turn
suppresses the subsequent vaporization; in porous medium with a critical gas
saturation, strong capillary pressure can delay the gas phase breakthrough.

e For retrograde gas, during depressurization, the foregoing condensation
decreases the apparent molecular weight of the gas and in turn suppresses the
subsequent condensation. Due to capillarity, condensation first forms in the
smallest pores. However, due to the very small interfacial tension, whether
capillary pressure is considered or not does not have a significant influence over
phase transition and fluid properties.

As a result of the research on phase behavior results from nanofluidics experiments, the
following studies are completed:



e Wang L, Gao Y. Neeves K. Ozkan E,, Yin X.: "Experimental Study and Modeling of
the Effect of Pore Size Distribution on Hydrocarbon Phase Behavior in
Nanopores"”, paper SPE 170894 presented at the SPE Annual Technical
Conference and Exhibition held in Amsterdam, The Netherlands, 27-29 October
2014.

e Wang L., Parsa E.,, Gao Y., Ok ].T., Neeves K,, Yin X., Ozkan E.: "Experimental Study
and Modeling of Nanoconfinement on Hydrocarbon Phase Behavior in
Unconventional Reservoirs", paper SPE 169581 presented at the SPE Western
North American and Rocky Mountain Joint Regional Meeting held in Denver,
Colorado, USA, 16-18 April 2014.

1.4. Filtration in nanopore throats

In nanoporous media, Darcy flow is no longer the dominating flow mechanism and a
combination of diffusive flows determines the flow characteristics. Concentration
driven self-diffusion has been well known and included in the flow and transport
models in porous media. However, when the sizes of the pores and pore-throats
decrease down to the size of the hydrocarbon molecules, the porous medium acts like a
semi-permeable membrane, and the size of the pore openings dictates the direction of
transport between adjacent pores. Moreover, when multiple mechanisms contribute to
flow, coupled fluxes need to be defined by the sum of all fluxes where the flux of type i is
related to the gradient of type j through some phenomenological coefficients known as
transport parameters.

The size comparison of the hydrocarbon molecules and the pore throats of shales
shown in Fig. 15 indicates that light hydrocarbons, such as methane, may flow freely in
shale while heavier hydrocarbons, such as some paraffins, ring structures, and
asphaltenes, may likely be sieved out. This observation is consistent with the fact that
most shale-gas plays produce higher than 95% methane and only light oil can be
produced from ultra-tight, unconventional reservoirs. Thus, it can be inferred that the
remaining composition of the fluids in the reservoir includes more of the heavier
components than that produced at the surface. The fact that nanoporous media acts like
a semipermeable (non-ideal) membrane and causes steric hindrance (filtration) to the
flow of some (larger) hydrocarbon components has ramifications on future
performance predictions and the planning of EOR applications in tight unconventional
reservoirs. Therefore, understanding and quantifying the ability of the nanoporous
media to act as a semipermeable (non-ideal) membrane and developing formulations to
incorporate steric hindrance (or filtration) in flow models is essential.
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Figure 15 - Sizes of molecules and pore throats in siliciclastic rocks on a logarithmic
scale covering seven orders of magnitude (Nelson, 2009)

The concept of steric hindrance (or filtration) is closely related to osmosis. Osmosis is a
special type of diffusion where osmotic pressure is created by the chemical gradient of
solutions across a semi-permeable membrane, which allows water molecules but not
solution ions. Water molecules flow from low-salinity to high-salinity solutions, due to
the difference in water activity, until it reaches equilibrium (Fig. 16a). At equilibrium,
the increase in hydrostatic pressure equals the theoretical osmotic pressure (Fig. 16b).

Initial condition Equilibrium condition

Osmotic
pressure

v

Low salinity
High salinity

Idealized
membrane

(a) (b)
Figure 16 — Osmotic pressure in a U-tube initially containing low- and high-salinity
water separated by an idealized, semi-permeable membrane.



The ability of a material to act as an osmotic membrane is quantitatively characterized
by the osmotic or membrane efficiency, w, which is called filtration efficiency in this
research. Its value ranges between 0, for impermeable materials, and 1, for materials
with perfect or ideal membrane behavior. Between the two extremes (0 < w < 1),
membranes are called nonideal. Both nonideal and ideal membranes are semi-
permeable. The membrane efficiency of a soil depends on the effective size of the pores,
and the size of the free-solution channels. Because of the variations of the pore sizes in
soils, only a portion of the pores display membrane properties (0 < w < 1), and,
therefore, soils are usually nonideal or leaky membranes. In general, w increases with
the effective stress and decreases with the solute charge and/or solute concentration.

Shale is considered as a membrane according to two basic theories:

- Electrostatic exclusion for charged solutes (Fig. 17)

i. In an ideal membrane (i.e., w = 1), electric fields associated with the diffuse

double layers (DDLs) of adjacent clay particles overlap within the pore space.
lons attempting to pass through the membrane are repelled across the entire

width of the pore space.

ii. Conversely, pore spaces of a non-ideal membrane (i.e., 0 < w < 1) are sufficiently
large that the electric fields do not overlap and contain an area of neutral or

"free" solution through which ions can pass.
- Steric hindrance
i. Geometric restriction to flow occurs when the size of the solute exceeds the pore
size.

ii. Unlike electrostatic restriction, this is the exclusion of uncharged solutes (e.g.,
nonpolar organic solutes), particularly those with high molecular weight.
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Figure 17 - Electrostatic exclusion of charged solutes: (a) “ideal” membrane: (b) “non-
ideal” membrane. (Clay Membrane Barriers, 2013).



Because the hydrocarbons of interest in this study are uncharged, steric hindrance
(geometric restriction) is the source of the membrane property, which leads to the
filtration (sieving) of hydrocarbon molecules according to their sizes in nanoporous
media. The magnitude of filtration is a function of the filtration pressure.

To define filtration and filtration pressure in unconventional, tight-oil reservoirs, we
consider two systems, which are connected with a pore throat possessing membrane
properties (Fig. 18). Because the pore throat selectivity permits the passage of fluid
molecules by their sizes, given a filtration pressure difference between two systems, the
concentration difference between the systems is determined by flash calculations. The
results are expressed in the form of filtration efficiency, which is essential parameter to
define coupled fluxes for porous media flow.

System 1
y System 2

| Lighter Fluid

Heavier Fluid
GG

6.4,

Figure 18 — Two-pore system used to model filtration by a nano-pore throat.

As shown in Fig. 18, we assign different molar fractions C, and C, to the light and heavy
hydrocarbon components, respectively, in the two pores to create a heavier
hydrocarbon mixture on one side (System 1) and a lighter mixture on the other side
(System 2). First, performing flash calculations by Peng-Robinson Equation of State (PR
EOS) at a pressure p; and a temperature 7}, and ensuring that the system components
stay in liquid phase for all times, we compute the fugacities of the components in

System 1. Then, we assume a filtration pressure, p,=Ap=p — p,, between the two

systems, such that the pressure of System 2 is p,=p —p,. At thermodynamic

equilibrium, the fugacity of the light component, C,, should be the same in both
systems; that is,

fCL: = q)échXE = ch: = q)échxpz (20)

However, the filtration (steric hindrance) of the heavy hydrocarbon component, C,,
would create imbalance in the fugacity of the heavy component:

S 1 1)



Knowing the fugacity of Component x, the molar compositions, C; and C,, in System 2 at
pressure p; can be obtained from flash calculations and the composition difference
between the two systems under a filtration pressure pr can be predicted. (Conversely,
this procedure could be applied by initializing the two systems at different
compositions and then estimating the filtration pressure required to maintain this
composition difference.)

After the fugacities of the components in Systems 1 and 2 are determined, the filtration
efficiency of the nano-porous medium is determined from

L L
o, =1=(f21 1) (22)
The overall procedure used to compute the filtration (membrane) efficiency is
summarized in the flow chart given in Fig. 19.

* Perform flash calculation at p, and T for given molar compositions in System 1

* Compute fugacities of components in System|

* Assume p, between the two systems and compute p, = p, - pp. for System 2

+ Estimate the composition of System 2 to initialize flash algorithm

NO
<

+ Perform flash calculation at p, and T
v,
* Check the fugacity of the component, which can transport freely

+ Find the final compositions of System 2

* Compute the fugacity of the component, which is filtered
h 4
+ Calculate the membrane efficiency, @

Figure 19 - Calculation of the membrane efficiency of a nanoporous medium

In the example cases studies in this research, C1, NCs, Cg, C10, C12, C16 and Cz6+ have been
used as the components of the fluids in Systems 1 and 2 in Fig. 18. In each case, the
components were classified as hindered (filtered) and unhindered (unfiltered) and
grouped accordingly. Calculations were performed for three different groupings of the
components:



Case 1.Two-component, sequential grouping: One unhindered (small) component
and multiple hindered (large) components, each of which is grouped with the
small component sequentially,

Case 2.Multi-component grouping: Multiple unhindered (small) components
grouped as one and paired with one hindered (large) component

Case 3.Pseudo component grouping: Two pseudo component groups of unhindered,
small and medium components and one pseudo component group of
hindered large components.

For demonstration, only some results for two-component, sequential grouping (Case 1)
will be summarized here. In this case, Systems 1 and 2 include only two component
fluids. While C; is the unhindered (small) component, one of NCs, Cg, C12, C16 and Cze+, at
a time, is selected as the hindered (large) component and the computations are
performed sequentially. Physical properties of these components, which were used in
flash algorithm, are given in Table 4.

Table 4 - Peng-Robinson characterization for the components

A. Critical Constants

Acentric MW
Factor (w) (g/mole)

C: 667.0029 343.00026 0.1100 16.043 0.287600000
NCs 550.6018 765.20070 0.2000 58.124 0.272800000
Cs 4214019 1043.40078 0.3105 108.89 0.264117010
Cio 360.3018 1138.00086 0.3913 134.96 0.259671059
Ciz  314.0006 1214.90100 0.4700 160.55 0.254505703
Cie 2499011 1335.50100 0.6197 210.51 0.249740073
C26+ 140.8009 1631.40138 1.1619 412.23 0.227877773

CPT Pc(psi) Tc(R) Zc

B. Binary Interaction Parameters between C1 and other components
C1  NC4 Cs C12 C1e Ca6+
C: 0 0.014749 0.033997 0.054287 0.071547 0.113281

C. Composition (Mole Fraction) of System 1
C1 NCq4 Cs C12 C1e Ca6+
0.3 0.7 0.7 0.7 0.7 0.7




The pressure and temperature of System 1 is 10,000 psi and 660° R (200° F),
respectively. Filtration pressures of 500-, 2,000-, 4,000- and 5,000-psi are considered
and the molar compositions at equilibrium conditions were calculated for System 2. The
mole percentages of the hindered and unhindered components are 70% and 30%,
respectively. Component C1 was the small component (solvent) and NCs, Cg, C12, C16 and
Cz26+, one by one, were chosen as the big component (solute). Consequently, molar
compositions of components at equilibrium conditions were calculated for System 2.

Figures 20 and 21 show the results for the systems with Ci&NCs and C1&Caze+
respectively. They depict that for all filtration pressures, System 2 has more C; and less
NCs or Cz¢+ than System 1. Moreover, the higher the filtration pressure (that is, the
smaller the pore-throat size), the more the concentration difference between Systems 1
and 2. Higher filtration pressure results in lower composition for the larger component,
implying that larger component is hindered more when the pore throat size is smaller.

Figure 20 - Filtration of C1&NCs (molar compositions of 0.3&0.7) for different filtration
pressures (Ap)



Figure 21 -Filtration of C1&C26: (molar compositions of 0.3&0.7) for different filtration
pressures (Ap)

The same procedure has been applied for the other pairs of unhindered and hindered
components (C1&Cs, C1&C12, and C1&Ci16) and the resulting compositions of System 2 as
a function of filtration pressures are shown in Figure 22. If the results for C1&NC4 and
C1&Cz6+ are compared, different filtration pressures will be required to attain the same
concentration difference between C1&NCs and C1&Cze+. For example, the same molar
concentrations of 0.5&0.5 in System 2 are attained at 3,400-psi and 4,300-psi filtration
pressures, respectively, for C1&NC4 and C1&Cz¢+ (i.e., larger components cause higher
filtration pressures).
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Figure 22 -Compositions of System 2 for C1&NCs, C1&Cs, C1&C12, C1&C16 and C1&Cz6+ for
different filtration pressures (Ap)

After the concentration differences were obtained at different filtration pressures, the
fugacity of the filtered component may be computed and the membrane efficiency, wy,
can be calculated. Figure 23 shows the membrane efficiencies, ws for NC4, Cs, C12, C16
and Cze+ for different filtration pressures, Ap. As expected, when the filtered component
becomes larger, the membrane efficiency increases.
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for different filtration pressures (Ap)



When the filtration efficiency is known, coupled fluxes to be used in a macroscopic
model of coupled-flow phenomena in shale may be constructed. The flux equations are
the relations between the flows and the driving forces. Coupled fluxes under isothermal
conditions are defined by a dissipation function, which is a sum of all fluxes where the
flux of type i is related to the gradient of type j through some phenomenological
coefficients known as transport parameters (Table 5). If only one type of flow is
dominant, then the transport parameters may be determined fairly easily from
experiments or a microscopic theory of transport, as in the estimation of permeability
from Darcy’s law. For coupled flows, the interdependency of transport parameters
complicates or prohibits their estimation.

Table 5 - Coupled and Direct Flow Phenomena (Young & Mitchell, 1993)

Flow J Gradient X

Hydraulic Electrical Chemical Thermal

Fluid Hydraulic Electro-osmosis Normal osmosis Thermal osmosis
conduction
(Darcy’s Law)

Electric Streaming Electric Diffusion and Seebeck effect

Current potential conduction membrane

potentials

lon Streaming Electrophoresis Diffusion (Fick's Soret effect
current Law)

Heat Isothermal heat Peltier effect Dufour effect Thermal
transfer conduction

Coupled fluxes under isothermal conditions are defined by a dissipation function, &,
given by

N

D=) JX, (23)
i=1

where

J=XLX (24)

In Eq. 24, L;; are the phenomenological coefficients that relate the flux of type i to the
gradient of type j. Assuming isothermal reservoir conditions and focusing only on flows
that are caused by chemical gradient, the dissipation function, ®, for coupled flows due
to hydraulic, electrical, and chemical gradients is given by

M

op Ol
o=—q2l % jo ot 25
qax Z‘J’ ox (25)



where M is the number of solute species, p and y; are the liquid pressure and the
chemical potential of solute i, respectively. In Eq. 25, the liquid (solution) flux, g, and the

molar diffusive flux, Jl.d, of solute i are given, respectively, by

0p ~& ou,

q:_Llla_x_le,j+2a_x (26)
i=1

0p & ou,
I=-L, ox ; Ly o (27)
and

P X o, .
d _ i -

Sl =Ly 5= ZLMH =L J=l2e.M (28)

If the chemical solution is dilute such that ideal solution relationship is valid, we also have

9, _ RT €,

= 29
ox C, ox (29)

The coupled fluxes concept may be applied for filtration in nanoporous media by
considering a single-solute system (M = 1 and for dilute solutions Vy= 1). In this case,
we have

w k

RT — 30
uox U ox (30)

and

o,Ck " wCk
Jéd — S a_p _ ¢Dv + fs RT acs (3 1)
u ox | RT U

ox

where the subscript s stands for the solute and, for our purposes, refers to the
hydrocarbon component that is sterically hindered by the pore-throat size. In Eq. 31,

Ds is the effective self-diffusion coefficient for sterically hindered hydrocarbon

component, which accounts for the factors affecting self-diffusion in pore channels and
is related to the self-diffusion coefficient, D, by

D =1,D, (32)

In Eq. 32, 7, is a dimensionless apparent tortuosity factor (0 < 74 <1) that accounts for
the tortuosity and connectivity of the pore channels as well as any other factor affecting
self-diffusion.

In this interpretation, smaller molecular size hydrocarbons, which are permitted to
pass through the pore throats, are treated as the solvent. Except for the membrane
efficiency, ws of the nanoporous medium, all of the parameters involved in this
formulation are conventionally determined. The membrane efficiency, ws; of the
nanoporous medium is obtained by the method developed in this research. It must also



be noted that, the results of the research not shown here have indicated that the
membrane properties of nanoporous media also affect the fluid phase behavior.

In general, the results of the research summarized here indicated that

e For two component systems, the filtration effect increases much faster with the
increasing molecular size than increasing concentration. In other words, the
filtration effect increases as the molecular size increases and reaches a limit
where most molecules are hindered by the pore size. At this limit, filtration effect
becomes less sensitive to concentrations.

e There is practically no difference between the membrane efficiencies of the two-
component and multicomponent systems. This result can be explained by the
fact that the hindered component properties are the same for the compared
cases; in other words, the membrane efficiency is mostly governed by the
properties of the hindered component.

e Similar results are obtained for the pseudo component grouping systems.
Difference in fluid compositions within different nanoporous systems can affect
bubble point pressure and formation volume factor of oil.

As a result of the research on filtration in nanopore throats, the following studies have
been completed:

e Geren F., Firincioglu T., Karacaer C., Ozkan E.: "Modeling Flow in Nanoporous,
Membrane Reservoirs and Interpretation of Coupled Fluxes", paper SPE 170976
presented at the SPE Annual Technical Conference and Exhibition held in
Amsterdam, The Netherlands, 27-29 October 2014.

e Geren F. : “Modeling Flow in Nanoporous, Membrane Reservoirs and
Interpretation of Coupled Fluxes” MSc Thesis, Petroleum Engineering
Department, Colorado School of Mines, 2014.

1.5 Anomalous-diffusion models in tight, fractured, unconventional reservoirs

In the last two decades, non-local, hereditary descriptions of flow and transport have
gained notable popularity among scientists, engineers, and mathematicians focusing on
applications in various forms of nano-porous systems. Until recently, these efforts have
not attracted much attention in the oil-field applications due to the dominance of
advective (Darcy) flow in conventional reservoirs. In unconventional shale-gas
reservoirs, on the other hand, diffusive flow mechanisms have been recently
incorporated into flow models due to their considerable contribution to flow in shale
matrix.

In statistical physics, diffusion is the result of the random Brownian motion of
individual particles. Classical (normal) diffusion is wusually associated with
homogeneous porous media. It is a special case where the random Brownian motion of
the diffusing particles is governed by a Gaussian probability density whose variance is
proportional to the first power of time; that is the mean square displacement of a



particle is a linear function of time (02 ~ t). However, a convincing number of works
have indicated anomalous diffusion in which the mean square variance grows faster
(superdiffusion) or slower (subdiffusion) than that in a Gaussian diffusion process.
Thus, a general relationship between the mean square variance and time is given by

a=1 Normal diffusion

2 _+a a#1 Anomalous Diffusion

or ~ t where oa>1 Superdiffusion (33)
a<1 Subdiffusion

Several mathematical assumptions can lead to anomalous diffusion formulation. These
assumptions range from assuming that diffusion follows a power-law as a function of
distance, fluid particles follow a continuous-time random walk (CTRW) behavior or that
observation and correlation scales are different (Raghavan 2011). Due to the
heterogeneous structure of porous media, diffusion can be faster or slower than normal
diffusion. Thus, the application of anomalous diffusion becomes useful in replicating
fluid flow in porous media, specifically at varying-porous scale. In addition, non-local
anomalous diffusion arises in nano-pores since local gradients of the mean diffusion
process are influenced by global pressure, which is governed by advective flow. Thus,
the resulting non-local anomalous diffusion equation is scale and memory dependent
(Ozkan 2013).

Several forms of the solution have been derived and provided for fluid flow in porous
media with fractal properties. O'Shaughnessy and Procaccia (1985) used fractals
approach and presented a modified normal diffusion equation. Scaling properties and
normalizing probability arguments they obtained

aP(T,t) _ 1 i D—1 6P(r,t)
at  rD-1or [k(T)T‘ or ] (34)

In their solution, the conductivity, k(r), is defined as the total conductivity of a spherical

shell of radius r and it involves product of spherically averaged values. Following their

derivation and assuming a constant diffusion coefficient, , k(r) in Eq. 34 is defined as:

k(r) = Kr~° (35)

where @ = D + a + 2 is the anomalous diffusion coefficient, D is the fractal dimension,
and «a is the scaling power. The conductivity k(r) scales with the radial distance r using a
power-law and the Laplacian operator is modified by including the coefficient D. Thus,
Eq. 34 is isotropic in D dimensions. In addition, the solution assumes a steady-state
conductivity that is assigned spatially. The asymptotic solution curve for anomalous
diffusion probability-density function expresses a stretched shape. This formulation,
however, neither provides the proper exponential function scaling nor meets the
desired asymptotic behavior of the non-Gaussian probability function.



Hewett (1986) provided a correlation to distribute reservoir properties (permeability,
porosity, etc.) using geostatistical parameters that correspond to a fractal system. His
aim was to account for dispersion due to reservoir inhomogeneity and different scales
of flow paths, which affect injected and recovered fluids. In modeling the reservoir, a
Euclidean medium with statistical coefficients of fractional Brownian motion was
assumed. In addition, well log data were incorporated to distribute the properties.

Chang and Yortsos (1990) presented a solution for NFRs based on the diffusion
equation derived by O'Shaughnessy and Procaccia (1985). Their objective was to model
natural fractures of different densities, conductivities and sizes. Also, they considered
the natural fractures as a multi-fractal network defined by certain fractal parameters
that is embedded in a Euclidean matrix. The equation governing fluid flow is given as:

9Ppr d-D9%Ppma _ 1 0 ( EaPDf)
atD + (1 a))rD 6tD - T[[))_l 6rD TD atD (36)

where the superscripts d and D are the Euclidean and mass fractal dimension,
respectively. With 8 being the spectral or conductivity exponent in their derivation,
was introduced as f = D - 68 - 1. In addition, the model accounted for pressure
responses in two scenarios based on choosing the matrix to be interconnected or
isolated from the well.

Beier (1994) also followed O'Shaughnessy and Procaccia (1985) and provided a
solution for heterogeneous reservoirs. He utilized two domains to represent permeable
and impermeable rocks with the permeable rock being a fractal network. Radial
symmetry was assumed in obtaining the solution for a vertically fractured well with
uniform flux and infinite-conductivity fracture as

) [} apP
9P _ 0.0002647,L% (rdf(—zdf/d5+2) _) (37)
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where d; is the spectral coefficient and dris the mass fractal coefficient. Also, 6 = 2 + dw
and dr = ds(2 + 6)/2. Using uniform flux and infinite conductivity, Beier was able to
apply the solution to field data. Also, he concluded that pressure expresses a power-law
behavior during linear and radial flows.

Acuna and Yortsos (1995) used the solution by Chang and Yortsos (1990) and provided
a numerical model for a synthetic fractal network combining the methods of
fragmentation and iterated function system. They simulated the pressure transient
response and concluded that well pressure is correlated with time by a power-law
function. In addition, they were able to determine the spatial coefficient from the data.

Flamenco-Lopez and Camacho-Velazquez (2003) used the derivation from Chang and
Yortsos (1990) and provided two solutions employing transient and pseudo-steady



state matrix-to-fracture transfer function; one with the matrix contributing to the flow
and one without the matrix contribution. Incorporating the pressure transient response
from transient and pseudo-steady state flow periods, they were able to determine the
parameters describing the fractal geometry. Fuentes-Cruz et al. (2010) proposed a
composite radial model with a fractal intermediate or transitional zone to analyze
build-up and fall-off tests. Their goal was to represent the viscous fingering developed
during fluid injection as an intermediate fractal region between the invaded and non-
invaded reservoir regions. In their formulation, the permeability and porosity of the
fractal region change with distance by

k(r) = ky (:—1)df e (38)
and
o) =91 (5)" (39)

The terms ¢1 and ki are porosity and permeability of the invaded region and r is in the
fractal region bounded by the invaded and non-invaded areas (ri1 <r <rz).

Cossio et al. (2012) derived a semi-analytical solution for an infinite single-porosity
reservoir fully penetrated by a vertical fracture. Their solution is in a simplified form
where porosity and permeability are spatially distributed with dimensionless distance
raised to the exponents (df - 6 — 2) for permeability and (df — 2) for porosity, similar to
Fuentes-Cruz et al (2010). Their derivation for the Cartesian system can be transformed
into radial flow by selecting proper scaling exponents and the authors stated that “a
radial flow with constant hydraulic properties is equivalent to a linear flow with
linearly increasing hydraulic properties” and the solution can be used to link linear and
radial flows.

Several attempts have been made to derive a proper anomalous diffusion equation as
well as applying some of these solutions to reservoir engineering problems. Schneider
and Wyss (1989) provided a solution in the form of fractional integral equation as:

1

U t) = 0 + s

fot dt (t — )% *Au(x, 1) (40)
where u(x, t) is the probability density, f,(x) is the initial distribution, a = dw/2, and dw
is the anomalous diffusion exponent. However, this solution fails to provide the
distribution function asymptotic shape since only one free parameter, a, is provided
(Metzler et al. 1994).



Giona and Roman (1992) tackled the spatial and temporal derivatives and obtained the
following solution:

oYP(rt) _ oP(r, t)
) = —Gr® [ D+ 2R, t)] (41)

: o 146’ , . .
In this derivation, y = d+— and 6' = 0. They utilized an explicit reference to account for

w

diffusion temporally and applied a linear relationship between the radial current and
the average probability density function. Their solution meets the asymptotic behavior
of the non-Gaussian probability density function. Yet, the derived expression has some
limitations and it does not reduce to the isotropic Gaussian diffusion when the
parameters are set for such diffusion.

Metzler et al. (1994) provided a fractional diffusion equation in the form

atz/d‘:l P(O) =- 19 < dg-1 0 2 p(r, t)) (42)

The parameters dw and ds; are the diffusion exponent and spectral dimension,
respectively. The derived equation is as follows

(r?) ~ t?/dw (43)

for the anomalous diffusion and satisfy the asymptotic behavior of the non-Gaussian
probability function. The temporal derivative carries the fraction (2/dw) and the spatial
derivative carries (ds - 1). This solution incorporates variations of spatial properties
and includes the time-dependent flux.

Camacho-Velazquez et al. (2008) provided a fractal fluid flow equation for NFRs using
the diffusion equation form derived by Metzler et al. (1994). The solution was derived
for a fractal reservoir including and excluding the matrix contribution during transient
and boundary-dominated flow periods. Pressure responses were used to estimate
fractal parameters, characterize the NFR and compare results with O'Shaughnessy and
Procaccia (1985) model.

Raghavan (2011) used a CTRW model to derive a fractional equation for anomalous
diffusion. The solution accounted for fractional temporal and spatial derivatives. Two
models were provided, a radial flow model with symmetrical radial distribution of
properties and a 2D Cartesian anisotropic model. Both solutions are applicable for
production under constant rate or constant pressure. The equation for radial flow is
given as:

=2 [ 1a() B = e Zop(n b (44)




where n is the dimension and would be replaced by the fractal coefficient dx.

Fomin et al. (2011) showed that an anomalous diffusion equation can be derived by
either relating a variable mass flux to spatial coordinates or assuming a scaled diffusion
coefficient. The diffusion equation is given as

avc b G
=5 (D53) (45)

and the mass flux law is

Je = Dr ;Y (55) (46)

Raghavan and Chen (2013) revisited the solution in Raghavan (2011) and included the
pseudo-skin function in the structure of the solution. They emphasized that the pseudo-
skin function in their solution is time dependent and it would be independent of time if
it were included in Chang and Yortsos (1990) or Beier (1994) formulations.

As suggested by Raghavan and Chen (2013a & b), the following constitutive relation
(flux law) is used in this project to describe flow in naturally fractured nano-porous
media:

v = A o (2R1), (47)

A gri-a \ gx

where 0 < a <1 and A, is a phenomenological coefficient. It is assumed that the
anomalous diffusion is related to the petrophysical heterogeneity of the medium and
expresses the phenomenological coefficient in the following form:

A = 2. (48)

The temporal fractional derivative in Eq. 47 is defined in the Caputo (1967) sense:

B !
(;%f(t) = - (11_ 5 fot%f(t’)(:%)s. (49)
The convolution integral in Eq. 49 signifies the hereditary nature of anomalous
diffusion on a heterogeneous velocity field. In addition, k, in Eq. 48 is a dynamic
property and different from the conventional Darcy permeability (it has the units of
L2T1~%), Physical interpretation of k, is not straightforward and, based on Egs. 47
through 49, static measurements are not suitable to determine k. Currently, the only
viable technique to determine k, is to match the dynamic (transient pressure or flow
rate) data with an appropriate model.



Using the flux law (Eq. 47) with the mass conservation equation yields the following 2D,
temporal-fractional (anomalous) diffusion equation:

8%Ap | 9%Ap _ 1 9%

o T o2 — naow AP (50)
where

Ao
N = e (51)

Based on the premises of anomalous diffusion models in fractal porous media, an
alternative to dual-porosity based formulations of flow in fractured unconventional
reservoirs has been developed in this research. Specifically, the temporal-fractional
diffusion equation given by Eq. 50 has been solved, subject to appropriate boundary
conditions, and implemented in the trilinear flow idealization (Fig. 24) for a fractured
horizontal well in a tight formation. The original trilinear flow model represents the
stimulated reservoir volume (SRV) between hydraulic fractures by the dual porosity
formulation (TDP). In the new model, the SRV is represented by the anomalous
diffusion formulation (TAD). Ozcan (2014) provides the details of the derivation.
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Figure 24 - Schematic of the trilinear flow model (Brown, 2009, Brown et al., 2011,
Ozkan etal., 2011)
The results of the new TAD model have been compared with those of the original TDP

model and the differences and similarities have been delineated. The data given in
Tables 6 and 7 have been used in the test cases.



Table 6 — Well, Reservoir, and Fluid Data (Intrinsic Properties)

Formation thickness, h, ft 250
Wellbore radius, rw, ft 0.25
Horizontal well length, Ly, ft 3000
Number of hydraulic fractures, nr 15
Distance between hydraulic fractures, dp, ft 200
Distance to boundary parallel to well (1/2 well spacing), x, ft 250
Inner reservoir size, y., ft 100
Viscosity, u, cp 0.3
Hydraulic fracture porosity, ¢r, fraction 0.38
Hydraulic fracture permeability, kr, md 5.0E+04
Hydraulic fracture total compressibility, c.r, psi! 1.0E-04
Hydraulic fracture half-length, xz, ft 250
Hydraulic fracture width, wy, ft 0.01
Outer reservoir permeability, ko, md 1.0E-04
Outer reservoir porosity, ¢o 0.05
Outer reservoir compressibility, co, psi-! 1.0E-05
Constant flow rate, g, stb/day 150

Table 7 - Inner Reservoir Data

product, (¢ci)e, psit

TDP (Intrinsic Properties) TAD

. . Phenomenological coefficient,
Matrix permeability, kn,, md 1.0E-4 ke, md-day1-c 1.2
Matrix porosity, ¢m 0.05 | Porosity compressibility 4.62E-4

Matrix total compressibility, cim, psi-t | 1.0E-5

Natural fracture permeability, k, md | 1.0E+3

Natural fracture porosity, ¢y, fraction | 0.7

Natural fracture total
. . 5.5E-1
compressibility, cy, psi-!

Natural fracture width, hy, ft 3.0E-3

To verify the TAD model, the asymptotic case of « =1 has been used. This case
corresponds to normal diffusion in a homogeneous reservoir, which can be obtained
from the TDP solution for a homogeneous reservoir [f(s) = 1] when k¢ and (¢pc)¢ are
chosen equal to k, and (dc,),. The results in Fig. 25 show excellent agreement between

the TAD and TDP solutions.
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Figure 25: Verification of the TAD solution for normal diffusion (a=1) in a homogeneous
reservoir.

As another verification, the results obtained from the TDP model for kf = 10® md and
km = 10-4 md are matched with the TAD model. As shown by Fig. 26, the TAD model for
a = 0.8 and k, = 1200 provides a reasonable match with the TDP model. This example
has been provided to show that the TAD model captures the naturally fractured
reservoir behavior idealized by the TDP models. It does not, however, imply a general
correspondence between the TAD and TDP models.
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Figure 26: Matching TDP model results with the TAD solution.



Figure 27 shows the pressure and derivative responses of the TAD model for 0.1 <
a <1 and a fixed value of k, = 1.2. All pressure and derivative responses in Fig. 27
display straight-line trends at early, intermediate, and late times. As the straight-line
trend is the diagnostic feature of a specific flow regime, existence of multiple straight
lines for different values of a indicates the versatility of the TAD model to cover a large
variety of flow regimes for fractured horizontal wells.
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Figure 27 - Pressure and derivative responses obtained from the TAD solution for
various a.

In Fig. 28, we consider the combined effects of the phenomenological coefficient, kg,
and the anomalous diffusion exponent, @, on pressure and derivative characteristics.
The results in Fig. 28 indicate that an increase in k, for constant a decreases both the
pressure drop and the derivative values. Variations of a for constant kg, on the other
hand, cause a change in both the magnitude of the pressure drop and the flow regime
characteristics (indicated by the changing slopes of the derivative responses). It should
be also noted that the variation of k, for constant a causes a parallel shift in the
pressure and derivative responses for all practical times for a < 0.5 and at early and
intermediate times for a > 0.5. The pressure and derivative responses become
independent of a at late times for a > 0.5.
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Figure 28 - Combined effect of k and a on pressure and derivative characteristics of

TDP model

For completeness, we also present the rate decline characteristics of the TAD model as a
function of a in Fig. 29. The physical interpretations presented for the pressure and
derivative responses in Figs. 5 and 6 are also applicable to the rate-transient responses
shown in Fig. 9. The early-time rate responses after the intersection time display
straight lines with slopes between 1/4 for ¢« =1 and 1/2 for @ = 0. The early-time
straight lines for ¢ = 1 and 0 are followed by sharp exponential-decline periods, which
are the terminal flow regimes for these cases. For a =0 exponential decline
corresponds to the depletion of a system consisting mostly of a tight-matrix. On the
other hand, for ¢ = 1, the system is dominated by natural-fractures and their depletion
causes the exponential decline behavior.

For 0 < a <1, the flow rates in Fig. 29 display straight lines with slopes less than or
equal to 1 (a = 0.1) and greater than or equal to 1/2 (a = 0.9) at intermediate (for
a > 0.5) and late times (for a < 0.5). For a < 0.5, the delay of flow by the tight matrix
causes a sharper drop in the flow rates at intermediate times before the display of the
late-time straight lines. For o > 0.5, the higher decline rates follow the intermediate-
time straight lines.
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Figure 29 - Rate declines obtained from the TAD solution for various a.

To demonstrate the application of the TAD model to field data, we also considered the
Barnett field data analyzed by Brown et al. (2011) by using the TDP model. The details
of the data are given in Brown et al. (2011). Fig. 30 shows the matching of the data by
the TAD model. For comparison, the match obtained by Brown et al. (2011) is also
shown in Fig. 30. Both the TAD and TDP models yield a reasonable match and it is not
possible to choose one over the other. However, because the TAD model does not
require explicit references to the intrinsic properties of the matrix and natural
fractures, the TAD model requires fewer regression parameters than the TDP model.
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Figure 30 - Matching the Barnett field data with the TAD and TDP models.



The results summarized above have led to the following conclusions:

Anomalous diffusion formulation is a viable alternative to dual-porosity
idealization of tight, fractured unconventional reservoirs.

The anomalous diffusion formulation does not require explicit references to the
intrinsic properties of the matrix and fracture media and thus relaxes the
stringent requirements used in dual-porosity idealizations to couple matrix and
fracture flows.

The interpretations of the pressure and flow rate behaviors predicted by the
anomalous diffusion model are consistent with the physical expectations and the
results of the dual porosity models.

As a result of the research on anomalous diffusion in tight, fractured, unconventional

reservoirs, the following studies are completed:

Ozcan O., Sarak H. Ozkan E., Raghavan R.: "A Trilinear Flow Model for a
Fractured Horizontal Well in a Fractal Unconventional Reservoir", paper SPE
170971 presented at the SPE Annual Technical Conference and Exhibition held
in Amsterdam, The Netherlands, 27-29 October 2014.

Ozcan O.: “Fractional Diffusion in Naturally Fractured Unconventional
Reservoirs™ MSc Thesis, Petroleum Engineering Department, Colorado School of
Mines, 2014.

Albinali A.: “Analytical Modeling of Fractured Nano-porous Reservoirs” A
Dissertation Proposal for Doctor of Philosophy in Petroleum Engineering,
Petroleum Engineering Department, Colorado School of Mines, 2014.



PROJECT 2: Fluid Transfer Between Nano-Porous Matrix and Multi-Scale
Fractures

Objectives: Define the interface conditions and fluid transfer mechanisms between
nano-porous matrix and fractures to more realistically account for the
contribution of ultra-tight, unconventional rock matrix.

Tasks:

e Fluid flow between fractures and nano-porous rock matrix (to be considered in
Phase 2)

e Models of flow from nano-porous matrix to multi-level fractures (partial work
done; continuing into Phase 2)

Deliverables:

¢ Conditions of pressure- and flux continuity at the interface (to be considered in
Phase 2)

e Thermodynamics and blockage mechanisms at the interface (to be considered in
Phase 2)

e Flow models for nano-porous matrix with multi-level fractures (initial results
available; more work in Phase 2)

Summary of Project 2 Results:

2.1. Analytical Dual-Porosity Models with Anomalous Diffusion

The most commonly used models to describe fluid flow in naturally fractured reservoirs
(NFR) are the dual-porosity/single-permeability models, often referred to as dual-
porosity (DP) models (Barenblatt et al, 1960, Warren and Root, 1963, and Kazemi,
1969). Due to their computational convenience and reduced data requirements, DP
models are also preferred to represent flow in naturally fractured unconventional
reservoirs. DP models rely on the premise that matrix provides storage and fractures
provide conductive paths.

The original need and justification of the DP models rest, primarily, on the fractured
carbonate reservoirs of the Middle East. The distinguishing features of these reservoirs
are the decent matrix permeability (in the tens to hundreds of md) and extremely high
fracture permeability (super-K fractures). Under these conditions, the fracture network
is the preferred flow medium, but it is depleted quickly. Because the matrix has
reasonable permeability, when the fracture network is depleted, the matrix starts
supporting the flow in the fracture system. The permeabilities of the matrix and
fracture network are such that the fluid velocities are high in both media to permit



modeling in terms of average properties and pressures and the representation of the
matrix and fracture media as overlapping continua.

In unconventional reservoirs, both the matrix and fracture permeabilities are
significantly downscaled and the matrix permeability reaches nano-Darcy scale where
contribution of Darcy flow is negligible. In general, nano-porous unconventional
reservoirs possess multiple flow mechanisms at different scales. Advection is the fastest
of all; however, its contribution to total flow is the minimum because of the small
proportion of the pores in which Darcy flow occurs. In nano-pores, much slower
diffusive processes occur. The local diffusion is, on the other hand, a function of the
global pressure distribution; i.e., the advective flow. This problem lends itself to a non-
local flow and transport formulation. In unconventional reservoirs, it is important to
consider non-local diffusion in matrix nano-pores under the global influence of the
pressure field dominated by the advective flow in fractures. An approach for non-local
modeling of flow in nano-porous unconventional reservoirs with long-range
interactions is to use a fractional diffusion equation. The fractional Laplacian operator
acts by a global integration, instead of a point-wise differentiation, which represent the
nonlocal character of the process.

As discussed in Project 1, Ozcan et al. (2014) incorporated anomalous diffusion into the
tri-linear model of fractured horizontal wells in tight unconventional reservoirs. In this
model, time-fractional flux was assumed to govern diffusion in the naturally fractured
inner reservoir between hydraulic fractures. In general, this model assumed that the
flow in an effective medium with the properties natural fractures would be intercepted
and slowed down by a heterogeneously distributed and discrete low-permeability
matrix system.

In the current research, two sets of natural fractures are considered in unconventional
reservoirs. The first set consists of globally distributed, continuum-forming macro-scale
fractures of high conductivity (usually developed as a result of tectonic activities) and
the second set includes the micro-scale, discontinuous, low-conductivity natural
fractures embedded in the matrix (these are assumed to have developed as a result of
kerogen maturation). Three combinations of anomalous and normal diffusion are
possible to model flow in naturally fractured media:

i) Case 1: Anomalous diffusion can be used to introduce the effect of
heterogeneity caused by the matrix and fractures into a single-porosity
(SP) medium.

ii) Case 2: Flow in the fracture network can be represented by normal
diffusion while flow in the matrix is modeled by anomalous diffusion.
The matrix and the fracture media flows can then be coupled by using
the DP idealization.



iii) Case 3: Flows in both matrix and fracture media are governed by
anomalous diffusion and coupled by DP idealization.

Case 1 has been considered in Project 1 (Ozcan et al. 2014). The second and the third
options are being investigated in the current research.

As of Nov. 2015, Case 2, which considers time-fractional diffusion in the matrix and
normal diffusion (Darcy flow) in the fractures, has been formulated and numerically
implemented. In this case, the size, connectivity, and conductivity of macro-fractures
warrant the continuum assumption and Darcy flow. Matrix flow, on the other hand,
takes place on a heterogeneous velocity field formed by a complex distribution and
connection of inorganic matrix, organic material, and small, discontinuous fractures and
can be represented by anomalous diffusion formulation. Following the classical DP
approach, the matrix was modeled as the distributed source term for the fracture
system and the fluid transfer from matrix to fractures was assumed to take place under
transient anomalous diffusion.

For convenience, the DP solution for Case 2 was first developed for a vertical well in a
cylindrical reservoir (Fig. 31). The matrix blocks were represented as spheres (other
matrix shapes can also be considered) and a general solution was obtained for 1D,
spherical, time-fractional diffusion equation. Pressure and flux continuity at the matrix-
fracture interface served as the boundary condition for the matrix with the assumption
that the flux from the matrix is instantaneously and uniformly distributed in the
encircling fracture volume. The matrix solution was then coupled with the fracture
solution, which was obtained from the radial diffusion equation for an infinite reservoir
with a vertical well producing at a constant flow rate. The outcome of this solution was
the definition of a new DP transfer function, f(s), accounting for anomalous diffusion in
the matrix. Then the DP transfer function was used to modify the inner reservoir
(between hydraulic fractures) solution in the tri-linear model of fractured horizontal
wells proposed by Ozkan et al. (2009).

The details of the new DP model solution will be provided in the PhD dissertation of
Albinali (2015). Here we briefly mention the key features of the solution. Raghavan and
Chen (2013) presented a 1D, time-fractional, flux equation that is based on a
Continuous Time Random Walk (CTRW) process in the form:

a1~ [
v(r,t) = —A, preE (a—i), (52)

where the fractional time derivative, 9.« /dt1-%, is defined in the Caputo (1967) sense by
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Figure 31 - Illustration of Cylindrical Dual-porosity System (Ozkan 2011)

The exponent ain Eq. 52 is related to the anomalous diffusion index 8 by:

2
o= m (54)
The normal-diffusion equation for the fracture system is given in radial coordinates as
follows:

19 (5ked o i

or (RIS + i = (e 5 (55)

The matrix source term, §,,, in Eq. 55 is obtained from Eq. 52. Carrying out the
derivations (Albinali, 2015), we obtain the following DP solution in Laplace domain

where the fracture experiences normal diffusion while the flow in the matrix is under
anomalous diffusion conditions:
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Note here that the expression bounded by the curly brackets in Eq. 56,
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is the dual-porosity transfer function, which is particular to the setup of the model.
Although formulation of Eq. 56 is for a vertical well in an infinite-acting radial-flow
system, the f(s) function in Eq. 57 is independent of the flow geometry and well type.
Therefore, substituting the new f(s) function in Eq. 57 for the f(s) function in the
original tri-linear model (Fig. 24), we obtain the new tri-linear model, which considers
anomalous diffusion in the matrix system of the SRV. Additional details of the solution
will be documented in the PhD dissertation of Albinali (2015). Some preliminary
results of Case 2 are available and noted below.

The solution was first verified by comparison with the tri-linear, normal diffusion
model. In Fig. 32, TLM denotes the tri-linear, normal diffusion model and TAD is the
new solution with anomalous diffusion in the matrix system. Setting the exponent a = 1
in TAD model reverts the matrix flow into normal diffusion. The data used in Fig. 32 are
given in Table 8. The same matrix and fractures properties were entered for both
models [the matrix properties kn and (¢pc)m in the TLM model are equivalent to k, and
(¢pco)ain the TAD model]. The two solutions are in excellent agreement.

=—=TAD, a=1

1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

t, hrs

Figure 32 - Comparison of the trilinear anomalous-diffusion model for a = 1 with the
trilinear normal-diffusion model



Table 8 — Data used for the model verification in Fig. 32

WELL, RESERVOIR, AND FLUID DATA

Formation thickness, h, ft 250
Wellbore radius, ry, ft 0.25
Horizontal well length, L, ft 2800
Number of hydraulic fractures, nr 15
Distance between hydraulic fractures, dp, ft 200
Distance to boundary parallel to well (1/2 well spacing), x, ft 250
Inner reservoir size, y,, ft 100
Viscosity, u, cp 0.3
Hydraulic fracture porosity, ¢r, fraction 0.38
Hydraulic fracture permeability, kr, md 5.0E+4
Hydraulic fracture total compressibility, ¢, psi? 1.0E-4
Hydraulic fracture half-length, x, ft 250
Hydraulic fracture width, wg, ft 0.01
Matrix permeability, k», md 1.0E-4
Matrix porosity, ¢m 0.05
Matrix compressibility, cim, psi! 1.0E-5
Constant flow rate, g, stb/day 1.5E+2

Sensitivity Runs-A1l and A2 shown in Figs. 33 and 34, respectively, were conducted to
determine the effects of the exponent a with different natural fractures densities pz In
Runs-A1 (Fig. 33), four values of @ = {1, 0.7, 0.3, 0.1} were considered for two values pr
= {0.9, 0.3} and, in Runs-A2 (Fig. 34), four values of pr = {0.9, 0.6, 0.3, 0.03} were
considered for two values of @ = {1, 0.1}. Theoretically, when a deviates from one, fluid
flow in the matrix deviates from normal diffusion, and the larger values of pr
correspond to denser and better-connected natural fractures. As expected, Figs. 33 and
34 show that the pressure drop becomes larger as the flow in the matrix deviates
further from normal diffusion. This is a result of the "retardation” of flow in the matrix
system. Similarly, the pressure drop is larger when there are fewer natural fractures
because of faster depletion of the smaller volume of fluid stored in conductive fractures.
Overall, these preliminary results verify the solution and indicate the potential of the
new model to account for the heterogeneities in the matrix system.
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2.2. Numerical Modeling of Anomalous Diffusion in Unconventional Reservoirs

2.2.1 Background

The focus of this research is to derive and implement a numerical model to better
describe and capture the flow of hydrocarbons in ultra tight unconventional reservoirs
based on the concept of anomalous diffusion. The classic diffusion equation used in
describing flow in conventional reservoirs is based on the well-known Darcy’s Law
which itself is derived from the fact that particle displacement follows Brownian motion
which is only valid in homogeneous media. The current approach to treating naturally
fractured reservoirs is by using dual-porosity models in which average properties are
used to describe the matrix on one hand and the continuous fracture network on the
other. While this approach is suited for conventional naturally fractured reservoirs in
which heterogeneity is mainly observed at one scale, unconventional (e.g. shale)
reservoirs are dominated by multi-scale and discontinuous fractures coupled with a
complex nano-porous matrix. Such a system can no longer simply be described by the
dual-porosity (or multi-porosity) approach, as it would require a large amount of
measurements at all scales as well as a very detailed computational model. By
introducing the concept of anomalous diffusion in highly heterogeneous media through
the use of fractional calculus, it should be possible to more accurately model the fluid
flow as well as properly capture the complexity of the modeled system across all scales
without over-discretizing the numerical model.

2.2.2. Anomalous Diffusion Equation in Petroleum Engineering Applications

The anomalous diffusion equation used is derived from a modified flux law coupled
with the classic mass conservation equation. The modified flux law incorporating space
and time non-locality for single-phase flow is given by:

kap 017 Bp

7=
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(58)

where 0 < a <1 and 0 < f <1 are the fractional derivative exponents in time and

space respectively, k,p is the anomalous permeability tensor with field units

mD.d'"“ftP~1, and V¥ is the fractional gradient defined in the three dimensional
Cartesian coordinate system as:
B a8 BT
B— [6_ or o7
v 9xB’ ayB’ 9zF (59)
It should be noted that space and time fractional derivatives are taken in the Caputo
sense, which will be elaborated in the next sections.



The classic mass conservation equation including source/sink term g, is defined as:
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Combining Egs. 58, 59, and 60 we obtain the general anomalous diffusion equation for
single phase, slightly compressible flow:

(LRap 217 o do _ 0ct 9P,
v <Bo Lo atl—av P") +B,, T B, ot (61)

In Phase I of the research the model has been restricted to one-dimensional single
phase, slightly compressible flow with uniform ‘anomalous permeability’ coefficient.
Based on these assumptions the diffusion Eq. 61 is simplified and rearranged to the
following form:
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This anomalous diffusion equation contains fractional derivatives in space and time, as
well as a fractional integral in time. In the following section an implicit finite difference
scheme is derived to solve an initial boundary value problem (IBVP) with uniform
initial pressure distribution and no-flux boundaries.

2.2.3. Finite Difference Discretization
The IBVP to be solved is as follows:
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0Poat) _ 0Be®8) _ fort=0 (65)

ax 0x

The spatial domain [a, b] is discretized into a uniform block-centered grid of Imax grid
blocks and block length Ax = (b — a)/Imax. The grid block centers are labeled with the
index x;, i = 1,...,Imax. Similarly, the time domain [0, T] is discretized into N time
steps of uniform length At =T/N and the time steps are labeled with the index
ton=1,..,N+ 1. The numerical approximations of the functions P,(x;t,) and
4o (x;, t,,) are denoted by P, and g, respectively.

Time Fractional Derivative: The time fractional derivative is defined in the Caputo
sense, allowing for the use of integer order initial conditions:



ot Tt T ra-a)

0%Py(xitn) _ cna 1 tn 0Py (x;T) a

—o=bns ftl T (- T%dr (66)

For the implicit scheme, the derivative term in the integral is approximated by the first
order forward difference and the integral can be rewritten as summation of integrals

over time At as shown in Murio (2008):
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Integration of the integral term leads to:
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Or after shifting indices, the implicit Caputo approximation becomes:

aan(tJ;z.tn) = O ST, wl“)(P ?+2—l _ Po?”_l (69)
where

Oant = oo i (70)
and

w® =11 — (1 - 1)@ (71)

Two important observations can be made from the fractional time derivative
approximation (Eq. 69). First, the evaluation of the pressure at t,,; requires the
pressures at all previous time steps from Po% = Py initia1 tO PO?. Second, for a —



1, wi“) =1, a)l(“) - 0,l=2,..,n and the approximation reverts back to the classic
forward difference approximation.

Time Fractional Integral: The time fractional integral of the source/sink term is
evaluated using the Riemann-Liouville integral up to time step ¢, ,; for the implicit
scheme.
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Integrating by parts once:
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The second term in the last equality of Eq. 73 can be discretized following the same
procedure as for the time fractional derivative, leading to the following finite difference
approximation:
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In case of a constant rate the second term in the approximation given by Eq. 74

vanishes and we obtain:
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Finally for @ — 1 Eq. 74 reverts back to g,;, "~ and Eq. 75 becomes simply §,, as in the

classic diffusion equation.

Space Fractional Derivative: In order to allow for flow contributions in the
positive and negative x-direction, the two-sided Caputo derivative is used which is a
weighted combination of left and right side derivatives.

61+ﬁ
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Here 0 <9 < 1 is the weighting factor allowing for adjustment of flow contributions
from either side of the point of interest.

The left-sided Caputo derivative (from the left boundary to point x;) is defined as:

cpl+B _ x; 92Py(§,t) _ an\1-(1+B)
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The right-sided Caputo derivative (from point x; to the right boundary) is defined as:
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Both derivatives can be discretized using a similar approach as for the time derivative
(Liu et al. 2003). The following shows the discretization of the left sided derivative.
Since a block-centered grid is used and the boundary is defined as no-flow boundary
the integral range is shifted to [x,, x;]:
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The second derivative in the integral is approximated by the second order central
difference and the integral can be rewritten as summation of integrals over uniform
space intervals Ax:
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Or after shifting indices, the left sided Caputo approximation in space becomes:

CD;IB = 0B,Ax Z§=1 w, (1+4) (Plr-ll—zll - zplr-ll-;ll + Pn+1 (81)



where

Op.ax = r(3—(11+/3)) i (82)
and
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In order to accommodate the no-flow boundary, when [ = i:
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Following the same logic the finite difference approximation for the right-sided Caputo
derivative in space can be shown to be:
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Finally, substituting (12) and (13) into (9), and assuming symmetric anomalous

diffusion (9 = 1/2) the finite difference approximation of the two-sided Caputo
derivative in space becomes:
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Two observations can be made. First, the stencil generated by the symmetric derivative

leads to a fully populated (I,;,qxXImqy) iteration matrix. Second, for g — 1, wiﬁ) =

1, wl(ﬁ) — 0 for [ > 1 and gg,, — 1/Ax?. Hence the approximation reverts back to the

classic second order central difference approximation and its tri-diagonal matrix.

Implicit Finite Difference Scheme: Substituting the finite difference
approximations to the time fractional derivative (Eq. 69), the time fractional integral
(Eq. 75 for constant rate), and the space fractional derivative (Eq. 86) into the
anomalous diffusion equation (Eq. 63), as well as multiplying both sides by the grid
block volume VR = AxAyAz, the following implicit scheme for the single phase, slightly
compressible flow with constant “anomalous-diffusion permeability coefficient,” k,, is
obtained:
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2.2.4. Preliminary Results

The presented finite difference scheme has been implemented in MATLAB and a
sensitivity analysis has been run on a and f. For the studied example, the initial
pressure was uniformly distributed and a constant production rate in form of a point
sink was applied at the left end of the spatial domain.

Sensitivity on f: Figure 35 plots pressure drawdown AP,,.;; vs. time for different
values of § with constant @ = 1. Hence the case § = 1 corresponds to normal diffusion.
For values of f < 1 the pressure drawdown at the well decreases as [ decreases, which
confirms the expected superdiffusion as fluid from regions further away from the well
contribute to the flow.
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Figure 35 - Effect of f on wellbore pressure drop



The superdiffusion for f < 1 can be observed more clearly in Figure 36, which shows
pressure profiles across the bounded reservoir after 50 days for different values of §. In
case of normal diffusion the flow is still in transient state (the pressure disturbance
reaches only 300 ft. from the well) while for f < 0.8 the pressure disturbance has
already reached the boundary at 500 ft.
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Figure 36 -Effect of 5 on pressure as a function of distance from the well at 50 days

Sensitivity on a: Figure 37 plots pressure drawdown AP,,,; vs. time for different
values of a with constant § = 1. Hence the case @ = 1 corresponds to normal diffusion.
For values of @ < 1 the pressure drawdown at the well increases as a decreases, which
confirms the expected subdiffusion.
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Figure 37 -Effect of @ on wellbore pressure drop as a function of time for § = 1



The effect of subdiffusion for & <1 becomes more clear in Fig. 38, which shows
pressure profiles across the bounded reservoir after 50 days for different values of a
and a fixed value f = 1 For @ < 1 the drainage area is smaller compared to the normal
diffusion case.
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PROJECT 3: Production from Tight, Fractured Formations in Close Proximity of
Source Rocks (Liquid-Rich Reservoirs)

Objectives: Define and model the support of source rocks on production from
contiguous fractured formations for the analysis and prediction of
production from liquids-rich reservoirs.

Tasks:

¢ Flow and transport mechanisms from source rock to producing layers (to be
considered in Phase 2)

e Production models for source-rock supported liquid-rich reservoirs (to be
considered in Phase 2)

¢ Flow characteristics and analysis of well performance (to be considered in Phase

2)
Deliverables:

e Layered reservoir model (Phase 2)
¢ Drainage area and well spacing considerations (Phase 2)
e Characterization and flow modeling guidelines (Phase 2)

Project 3 will be considered in Phase 2



PROJECT 4: Simulation of Flow and Transport in Fractured Nano-Porous
Reservoirs

Objectives: Progressively incorporate the results of the UREP research projects and
new findings into a numerical unconventional-reservoir simulator
developed by NITEC.

Tasks:

¢ Black-oil simulator incorporating bubble-point suppression
e N-porosity simulation model

Deliverables:

¢ Black-oil and n-porosity simulation of liquid-rich reservoirs (Phase 1 results
complete; more work in Phase 2)

e Number of pore systems from capillary pressure curvature (Phase 1 results
complete; more work in Phase 2)

¢ Connectivity mapping of inter-porosity systems (continuing into Phase 2)

e Simulator executable, documentation, and test cases by NITEC (Phase 1 results
complete; continuing into Phase 2)

Summary of Project 4 Results:

4.1. NITEC-COZSim-UREP Simulator

4.1.1 Overview - General Description of the Simulator
NITEC-COZSim-UREP is a three-phase, four-component, fully implicit, finite-difference
extended black oil reservoir simulator. The simulator uses black oil type input data for
fluid description and converts the data to a compositional form internally. The model
can be used for variety of cases such as:

« Depletion and water flooding,

« Immiscible, first contact and multi-contact miscible COz injection and cycling,

« Hydrocarbon gas injection and cycling,

« COz sequestration in aquifers and oil/gas reservoirs.

« Single and dual porosity reservoirs

« Low-permeability unconventional reservoirs

The simulator considers 3 phases (oleic, gaseous and aqueous) and consists of mass
balances for four components (water, oil, hydrocarbon gas and COz). Components may
thermodynamically partition among three phases and both hydrocarbon gas and CO;
may partition into gaseous and aqueous phases as shown in Table 9.



Table 9 - Phases and Components in NITEC-COZSim-UREP

Component Phase
Numb Component
umper Oleic Gaseous | Aqueous
1 Water - - Wi
2 0il X2 - -
3 HC Gas X3 V3 w3
4 CO; X4 Va4 Wa

In addition, NITEC-COZSim-UREP can handle hydrocarbon gas and CO2 solubility in the
aqueous phase. While this may not be important in the main oil zone, it may influence
the simulation results where the water saturation is high, such as in transition and
residual oil zones or reservoirs under water alternating gas (WAG) injection.

Even though the data that is required to run the simulator is in black-oil format, all the
information is converted to compositional form internally. Built-in correlations
estimate component molecular weights, parachors, fluid properties and mole fractions
based on the specific gravity of oil and hydrocarbon gas. This approach reduces the
engineering time and the amount of data needed for simulation studies compared with
fully compositional simulators.

Built-in CO2 correlations are used calculate pure CO; properties, CO2 solubility in the
aqueous and oleic phases in the presence of hydrocarbon gas, CO2 swelling of the oleic
phase in the presence of hydrocarbon gas and phase viscosities that reflect CO2
solubility.

Vapor-Liquid Equilibrium (Flash) calculations are performed at the bulk pressure,
which is the pressure corresponding to unconfined laboratory conditions. However, the
phase properties (e.g. viscosity, density) are calculated at the pressures of each phase.
This requires an iterative solution of the phase properties and the capillary pressures
until they converge. Confinement impact on phase behavior of black-oil fluids (bubble
point pressure suppression) is accounted in the simulator.

Miscibility calculations are based on interfacial tension using black-oil data. Interfacial
tension reduction due to partitioning of CO; in the oleic and gaseous phases is
calculated using parachors; it is also used to simulate transition from immiscible to
partially miscible, and finally to fully miscible conditions. Viscous fingering is handled



through a Todd-Longstaff type viscosity model using interfacial tension rather than
using a constant mixing parameter. Residual oil saturation can be modeled under fully
or partial miscibility conditions. The impact of both full and partial miscibility on gas-oil
capillary pressure and relative permeability is accounted with fully implicit
formulation.

NITEC-COZSim-UREP treats wells in fully implicit manner and it is able to simulate well
and field constraints. Well modeling includes:

« Rate and BHP constrains for production and injection wells
« Wellbore cross-flow
« Well actions (workover and shut-in) based on the well limits

« Field constraints for production, injection and re-cycling

NITEC-COZSim-UREP uses three dimensional corner-point geometry grid with
Cartesian coordinates, and it is able to handle faults (limited to vertical in COZView).
Required non-neighbor connections are generated automatically. Regions can be
defined for initialization, rock and fluid properties.

4.1.2. Mathematical Formulation and Solution Method

The formulation consists of 4 coupled mass balance (continuum) equations for each
cell. The molar continuity equation for any component c is:

0
V(pi,) +V(pi), +V(pwr.). ~q, :(Q’T”) (90)

where subscripts a, o and g denote the phases - aqueous, oleic and gaseous phase,
respectively, and p, is molar density of a phase. z, is the overall mole fraction of

component ¢. w, x and y are the mole fractions of the component in the aqueous, oleic
and gaseous phases, respectively. The right hand side of the equation represents
accumulation terms and left hand side is the total contribution from inter-block flow
terms and source or sink. g is the molar rate and v is the directional Darcy velocity. It is
defined as:

v=kk A(VP—WD) (91)

The non-linear continuum equation is discretized in time and space by using standard
finite-difference calculations. Time indexing of variables are all fully implicit. Four



independent variables, bulk pressure and overall mole fractions of water, hydrocarbon
gas and COg2, are solved in fully implicit manner. The aqueous phase is treated in the
same way as the other phases in terms of the continuity equation.

In order to solve the non-linear continuum equation, all terms are converted into linear
form of the primary variables. Time difference formulation of accumulation terms can
be expanded as following for grid block #:

J 0z p, 1 n+l "
Ap) )" ~(o) | 2

where subscript n represents the time level and the parameter value at nth time level is
known (old time level) whereas n+1 denotes next time step which is unknown. Since
all parameters are linearized with the primary variables, the next time step can be
approximated with Taylor series expansion as following:

/
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Here 0X denotes the primary variables as dF, .0z ,0z,and dz,, bulk pressure and
J

overall mole fractions of water, hydrocarbon gas and CO2 components, respectively.
Superscript | is the iteration number. Iteration / represents known parameter value and
1 is unknown as following:

aXl-H — X1+l _ Xl (94)

Note that the simulator uses overall mole fractions as primary variables instead of
component mole fractions, which reduces the number of independent parameters to be
solved and requires a special vapor-liquid equilibrium (flash) algorithm. In addition,
NITEC-COZSim-UREP does not use water saturation as a primary variable. Water
saturation cannot be a truly independent variable in CO; displacement cases because
CO2 solubility impacts water saturation. Simulators that use water saturation as an
independent variable may have difficulty addressing the impact of CO: solubility
variations in the aqueous phase.

Similar to accumulation term, inter-block flow terms are expanded in fully implicit
manner and Taylor series expansion is also used. As a result of this linearization
procedure, a set of linear equations are solved using a linear solver. NITEC-COZSim-
UREP uses HYPRE linear solver(Todd and Longstaff, 1972) from Lawrence Livermore
National Laboratory. A simplified demonstration of solution matrix is shown below.
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ELF 0 G 0 0 H 0 07X, R,
D, E, F, 0 G 0 0 H, 0|dX,, | |0R,,
0 D, E, F, 0 G, 0 0 H|0dXy, | |0Ry,
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0 B, 0 0 C, 0 D, E F|0X,,| |dR,,
|0 0 B 0 0 C 0 D, E |0dX,,]| |0R,,]|

Each element in the left hand side of the Jacobian matrix represents a 4x4 coupled
matrix, where Fand D represent the flow in the X direction; ¢ and C represent the flow
in the Ydirection; and H and Brepresents the flow in the Z direction. Each dR is a 4x1
coupled matrix, representing the residual or result vector. d X is a 4x1 primary variable

T
vector, representing[ 0B, 0z, dz, Oz, J :

Bulk pressure (£, ), which is the pressure corresponding to unconfined laboratory

conditions, is one of the solution variables solved from the discretization of the
continuum equations. Flash calculations are performed at the bulk pressure, which is
obtained from the solution of non-linear conservation equations.

The commonly used simulators evaluate the fluid properties of oil and gas phases at a
single pressure, while disregarding the phase pressure difference due to capillary
pressure observed in confinement. This impacts the evaluation of fluid properties such
as solution-gas-oil ratio (Rs), formation volume factor (B,), viscosity (u), etc. NITEC-
COZSim-UREP calculates phase properties, such as density and viscosity, at the
corresponding pressures of each phase. This procedure requires an iterative solution of
the phase properties and the capillary pressures until they converge. Estimated
capillary pressure values are used to calculate mole fractions, phase properties and
saturations. Then these calculated saturations are used to calculate capillary pressures
using the capillary pressure curves. This loop will go on until the solution converges to
a tolerance value. A simplified flow diagram of the iterative solution technique is given
in Fig. 39 and the general flow chart of the simulator modules is shown in Fig. 40.
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Figure 40 - General Flow Chart of Simulator Modules

Figure 41 shows the general flow diagram of the simulation module. First item in the
flow chart includes the iterative procedure given in Fig. 39 to calculate block properties.
Convergence criteria include pressure, overall mole fractions and material balance
along with the convergence criteria of the linear solver. NITEC-COZSim-UREP calculates



time-step sizes automatically with an algorithm based on the convergence of previous

time step. Maximum and minimum time step sizes can be specified by user.
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Figure 41 - General Flow Diagram for Simulation Module

4.1.3. Initialization

Cut Time Step Size ]

NITEC-COZSim-UREP uses vertical capillary-gravity equilibrium to calculate initial
reservoir pressure, saturation and, composition distributions. Depth of gas-oil and

water oil contacts can be defined by user.

Unlike the other widely-used commercial simulators, phase properties are calculated at
the pressures of each phase. This method also requires an iterative solution similar to
the procedure given in Fig. 39. First, initial saturations are calculated from capillary
pressure curves. Using these initial saturations, capillary pressure values, fluid
properties, mole fractions and saturations are updated. This iteration continues until

reaching a convergence.



Figure 42 shows the hydrodynamic gravity-capillary equilibrium initialization of a 3-
phase system. Phase pressures are determined using the respective phase gradients.
Excess pressure calculation is also included in initialization module.

amssal] yng

Gas-0il Contact

S
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e e e
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Figure 42 - Initialization of a simulation model

The simulator is able to implement multiple initializations (different initialization
times) for bypassing history-matching process. This also allows initializing residual oil
zones with imbibition capillary pressure curves. The determination of initial
component compositions is discussed below in the PVT and Flash Calculations section.

4.1.4. PVT and Flash Calculations

The fluid data required by NITEC-COZSim-UREP is in black-oil format and it is
converted to compositional form internally. This procedure consists of the calculation
of overall mole fractions and mole fractions for each component. As an example,
calculation of overall mole fraction of oil component from black oil data for
initialization:

S
z =[5 S 4 oy % (95)
B.p; ) \BPw BpS Bopy




Mole fraction of oil component in oleic phase:

X, = / [1 +R, Z{;g ] (96)
g

NITEC-COZSim-UREP does not use fugacity constraints, equation of state based flash
procedure, or table lookup K-values. Equilibrium K-values used in NITEC-COZSim-UREP

are defined as:

Ko3=& K =5 K04=& Kw4=& (97)
Tox W, Tox, oW,

K-values are calculated internally using solution gas-oil ratio, solution gas-water ratio
and molar density of the phases. The following is an example calculation of equilibrium
K-values for the oleic phase with hydrocarbon gas.

_1+R’"

il 98
0,3 R;Z)s ( )
where
R.;zn),3 = Rso,} p_‘; (99)
Pg

R . is solution hydrocarbon gas - oil ratio; p)° and pX densities of oleic and gaseous
50, o g

phase pressures at standard pressure and temperature conditions, respectively. R” . is

molar solution gas - oil ratio. K-values are calculated using the R;tables calculated with
built-in correlations(Todd and Longstaff, 1972) and it is able to model variable
saturation pressure cases.

4.1.5. Built-in Correlations

The most important mechanisms of a CO;-oil displacement process are the oil viscosity
reduction and the oil swelling which are results of CO2 solubility in oil. Therefore, it is
important to calculate CO2 solubility effects in the simulation model. CO> - oil solubility,
oil swelling factor and COz-o0il mixture viscosity is calculated using genetic algorithm-
based correlations(Hassanzadeh et al., 2008). This model is a generalized approach and
gives more accurate predictions than conventional correlations which are limited by
data ranges and conditions. Genetic algorithm-based correlations are universal and can
be used to predict the effect of CO2 for both dead oil and live oil properties. Table 10
gives the solubility related parameters and input variables that are used to calculate
those parameters.



Table 10 - Parameters and Variables related to CO2 solubility

Parameter Input Variables

Saturation Pressure, Temperature, Oil
COz Solubility Gravity, Oil Molecular Weight, CO>
Liquefaction Pressure

Initial Oil Viscosity, CO2 Solubility,
Saturation Pressure, Temperature, Oil
Specific Gravity

CO2-0il Mixture
Viscosity

Oil Swelling Factor Oil Molecular Size, CO2 Solubility
Water -
hydrocarbon gas solubility (Culberson et al., 1950), water - hydrocarbon gas solubility
salinity correction (Culberson et al, 1950), water formation volume factor for
saturated conditions (Culberson et al, 1950 & Dodson and Standing, 1944) is
calculated with built-in correlations. Density, z factor and viscosity of pure CO; are also
calculated internally (Hassanzadeh et al.,, 2008).

COZView/NITEC-COZSim-UREP uses Corey-type two-phase imbibition and drainage
relative permeability curves. Modified Stone’s second method(Todd and Longstaff,
1972) is used for 3-phase oil permeability model. Modified Stone’s second method
version in NITEC-COZSim-UREP is defined as:

k
kI‘O = kI”OCW {(% + kI"W ][kri + kl”g j_ kI‘W - krg } (100)

where ko is oil relative permeability for an oil, gas and connate water system, Krow is 0il
relative permeability for a system with oil and water only.

4.1.6. Bubble Point Suppression and Excess Pressure Calculations

At the nano-pore scale, capillary forces play an important role on phase behavior that is
not considered in conventional PVT studies. Confinement on phase behavior of black-oil
fluids manifests itself as bubble point pressure suppression, extension of the
undersaturated portion of the formation volume factor curve, and alteration of the
equilibrium gas composition. It has been shown that when there is a pressure
difference between the liquid and gas phases, the vapor liquid equilibrium shifts and
the bubble point is suppressed compared to the bubble point pressure calculated by



assuming a single system pressure(Todd and Longstaff, 1972 & Vazquez and Beggs,
1980). This shift is larger than the phase pressure difference (due to capillary and
surface forces) and the additional suppression amount is called excess suppression.

The correlation was developed through analyses of three unconventional oil samples
evaluated at different saturation pressures and compositions. Excess suppression ratio
correlation?? is defined as:

P
“ees = ) 1x107 R*+0.0009R —0.1022 (101)

total
where Pexcess is excess suppression and Proa is total suppression and it is defined as

=P 4P (102)

total excess c

The excess suppression ratio correlation is included to NITEC-COZSim-UREP as a built-
in correlation. For the flow simulation, the bulk pressure is one of the solution
variables obtained from the discretization of the continuum equations (see
Mathematical Formulation and Solution). The excess suppression ratio correlation
relates the bulk pressure to gas pressure as a function of gas-oil capillary pressure and
the Rs at bulk pressure. The capillary pressures are then used to determine the
remaining phase pressures. This solution enables us to model the possible impact of
confined phase behavior on flow by incorporating gas-oil capillary pressure to fluid
property calculations.

For detailed information about the excess pressure and bubble point suppression,
please see Refs. Lasater (1958) and Warren and Root (1963).

4.1.7. Miscibility and Viscous Fingering

Miscible flooding may create an unstable frontal advance due to viscous fingering or
gravity over-riding because of the unfavorable viscosity and density ratio between the
solvent (CO2) and the oil. Accurate characterization of displacement processes requires
describing unstable flood front formed by physical dispersion. Simulators which
assume that solvent and oil are completely mixed within a grid block such as
compositional simulators, give optimistic displacement results for coarsely gridded
models. Using finely gridded models may provide more realistic results; on the other
hand, it may be impractical for modeling full-scale miscible flooding projects.

If the CO: displaced zone is large with respect to grid size block, oil and solvent can be
treated as completely mixed in the grid block. If the CO2 displaced zone is very small



with respect to size of grid block, oil and solvent can be considered completely
segregated as pure components and no mixing occurs. Generally, the actual fluid
behavior is somewhere between the two mixing limits, which correspond to partial
mixing. Todd and Longstaff (1972) proposed an empirical model to include viscous
fingering effects for coarsely gridded models assuming partial mixing of solvent and oil.
The Todd and Longstaff model is based on modification of classical black oil type
properties such as relative permeabilities, densities and viscosities with a constant
user-defined mixing parameter.

NITEC-COZSim-UREP uses a viscous fingering model based on the interfacial tension
function rather than using a constant mixing parameter proposed by Todd-Longstaff.
Effective viscosities of the oil and solvent system are calculated from their immiscible
viscosity values as following:

—_ =10 /(o)
luue _lua lum (103)
and

—_ -f(0),,f(0)
luse - lus lum (1 04)
where

A )
SQ‘LLU 4 + SU‘LLS 4

m= )| (105)

S +S
o g

where n, is viscosity of the mixture and s (o) is the mixing parameter function. (o)
represents a channeling function to impose partial or full mixing within a grid. It is
calculated internally. f(o) is a function of pressure, molar densities, parachors and
mole fraction of components. A value of s(c)=1 corresponds to full mixing of solvent
and oil within a grid block and it results a piston like displacement. f(c)=0
corresponds to negligible mixing or negligible dispersion similar to immiscible
displacement. Partial mixing is represented by values of 0< f(o)<1. In this case,

effective viscosity of the solvent will be less than the effective viscosity of oil, hence,
solvent will travel faster than oil and create viscous fingers.

NITEC-COZSim-UREP predicts miscibility using interfacial tension based on Macleod-
Sugden(Vazquez and Beggs, 1980) correlation between the two phases. The interfacial
tension between the oil and gas phases is used to measure how miscible the two fluids
are. Miscibility occurs when the interfacial tension between the two phases drops to
zero. Relative permeabilities and capillary pressures are interpolated as functions of



interfacial tension between immiscible and miscible values. The Macleod-Sugden
correlation is used to calculate interfacial tension as following:

o{ 4 P,.(pox,-—pgy,»)} (106)

i=1

where x; and y; are the liquid and gas mole fractions, p,and p, oleic and gaseous phase

molar densities and P; is the parachors of the i th component. Parachor value for oil
component is calculated from:

P, =18.824+3.0453MW,_ (107)

where MW, is C5+ oil molecular weight and it is estimated from the API value of oil by

using Lasater correlation(Vazquez and Beggs, 1980):

7864.9 1/1.0386
MW, = - 108
Cs, ( API } ( )

Gas parachor value:

P, =18.824+3.0453x MW, (109)
g

where gas molecular weight:

MW, =SG, xpt, x p (110)

air

4.1.8. Dual Porosity Modeling

Dual porosity is defined as discrete matrix blocks in the continuous fracture network
formed by intersecting horizontal and vertical fractures(Vazquez and Beggs, 1980).
Since matrix blocks are only connected through the fracture system, fluid flows through
the fracture network.

Primary variables are solved for only fractures. After fracture continuity equation is
solved, matrix equation is solved explicitly. Flow rate from matrix to fracture for any
phase S can be defined as:

e = Ty (Pmﬁ - Pf,ﬁ) (111)



where 1 is the phase mobility and Pn and Prare the pressures in matrix and fracture,
respectively. Matrix-fracture exchange transmissibility for grid block with a bulk
volume AxAyAz :

_ k. k, k
T =4.50844x10 3><AxAyAz[L—;+L—;+L—;] (112)
x v

z

where ky, ky and k, are matrix permeabilities, Ly, Ly, and L, are fracture spacing in the x,
y, and z direction respectively. Matrix fracture exchange transmissibility can be
specified by user or internally calculated if fracture spacing values are assigned.
Analogous to cell-to-cell transmissibility, fracture exchange transmissibility is the main
parameter that controls the flow rate

Dual porosity option in NITEC-COZSim-UREP is able to model recovery mechanisms
such as gravity imbibition/drainage, molecular diffusion (Todd and Longstaff, 1972),
fluid expansion, and viscous displacement.

Notes on dual porosity option:

e Well completions connect only with the fracture system.

e Inter-block transmissibility calculations are determined in the same manner
with single-porosity model.

e Molecular Diffusion driven by concentration gradient can be modeled with
liquid-liquid, gas-gas and cross-phase diffusion.

4.1.9. N-Porosity Modeling

The N-porosity modeling is in progress. The algorithm to divide the model into n-
porosity bins based on capillary pressure has been developed. The capillary pressure,
relative permeability curves and permeability values for each bin based on the total
average property values are also calculated.

4.1.10. Initial Composition Distribution and Filtration

One of the objectives of NITEC-COZSim-UREP was to incorporate complexities due to
nano- pores present in this medium. Compositional variation due to nano-filtration is
one of those complexities. Geren et al. (2014) showed that it is possible to have
different compositions in different pores in thermodynamic equilibrium due to the
filtration of bigger molecules through the small pore throats. Based on Geren et al.’s
work the initial compositional distribution of the fluid in different pores with their
corresponding equilibrium pressure (filtration pressure) will be included in the
simulation model soon.



PROJECT 5: Analysis and Prediction of Well Performance in Unconventional
Reservoirs

Objectives: Develop and improve models and interpretation methods for pressure-
and rate-transient data and long-term production performance to help
reservoir management.

Tasks:

e PTA and RTA in unconventional reservoirs (partial results available; continuing
into Phase 2)

e Interference models for wells in unconventional reservoirs (partial results
available; continuing into Phase 2)

e Decline-curve-analysis methods for unconventional reservoirs (to be started in
Phase 2)

Deliverables:

e Improved models of PTA RTA in unconventional reservoirs (partial results being
delivered; more work in Phase 2)

e Analysis and interpretation guidelines (partial results being delivered; more
work in Phase 2)

e Interference analysis for fractured unconventional reservoirs (partial results
being delivered; more work in Phase 2)

e Improved decline-curve analysis techniques (to be considered in Phase 2)

Summary of Project 5 Results:

5.1. A New Superposition-Time for the Analysis of Unconventional Gas-Well-Test Data with
Pressure Dependent Viscosity-Compressibility Product

5.1.1. Overview

In order to produce tight, unconventional gas wells economically, thousands of psi
pressure drops are required. Under these conditions, the gas compressibility-viscosity
product may exhibit variations 3 to 10 times greater than the initial values in the
vicinity of the fracture and have a significant impact on the observed rate-time
behavior. Consequently, pressure- and rate-transient analysis solutions and procedures
in terms of gas pseudopressure, which assume negligible variation of the viscosity-
compressibility product, yield lower than expected permeability values.

Because the source of the problem is the strong pressure dependency of the viscosity-
compressibility product at low pressures, obtaining more rigorous analytical or
semianalytical solutions of the nonlinear gas-flow equation is a key objective of this
project. Here, we consider the linear-flow solution for an infinite-conductivity hydraulic



fracture. The conventional solution for this problem by assuming constant viscosity-
compressibility product is given by

Am,(¢) 2844T\Jmn, [ 4, N —
) e a2 -

where

2.637x107k

= 114
n, o(uc,) (114)

Based on Eq. 113, rate-normalized pseudopressure drop vs. superposition time defined
by

SN0 L Ul ) N ey (115)

t I
superposition q ( t ) q (t)

is expected to yield a straight line with slope

= 224N, (116)

which can be used to compute \/;xf. In this project, a new solution is derived to account

for the variation of viscosity-compressibility product by using a perturbation approach.
The new solution leads to the definition of a new superposition time. The new solution
and the superposition time will be used to develop a new regression analysis
procedure.

5.1.2. Solution of the Non-Linear Diffusion Equation

The diffusion equation in terms of pseudopressure is given by:

’Am _ 1 0Am
where
wzw(y’t)zn,-—nz((p“c)f_((p“c) (118)

n (uc)



and

2.637x107k
n=— ——
ouc

The initial and boundary conditions are given by

Am(y,t—0)=0

Am(y—>0<>,t)=0

and
aAm (y — O,t) - 28447'L'C]T
dy 2khx

Let us express Eq. 117 as a perturbation equation:

where

e 0 Linear
1 Non-Linear

The solution of Eq. 123 can be assumed in the following form:

Am=Am"+ e Am*

k=1

Substituting Eq. 125 into Eq. 123, we obtain
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Eq. 126 suggests that Am°, Am', Am’, ..., are the solutions of
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Consider the 0t order perturbation (the linear problem):

o> Am° laAmO 3

W n =0 (128)
Am® (y,t—0)=0 (129)
Am® (y = o0,t) =0 (130)
and
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The Green’s function solution of the linear problem (Eqgs. 128-131) is given by

aoi (,0)= 255 [ ()3 (.- ) (132)
0
where
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S = S 133
2.0 t—t’)eXp{ 477,.(1—1’)] (133)
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If §=constant = q/(zxfh) , then
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Let us now consider the 1st order perturbation:
2 1 1 0 0
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1
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The Green’s function solution of the problem in Eqs. 136-139 is given by
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Using Green'’s second identity,
[(6Vy —yV?9)dD = [(9Vy —yN¢)-iidT (143)
D T

Eq. 142 becomes



0 oAm' G T 9’ Am’
A 1 , -n G— 1_ _ G 0 d ’ ’
' (7:) n![ v 9y , { (w 9y ]y}t

o 0° Am’
-l G[wo 9"

Consider

(144)

de'dt’

aa—;z(a)oAmo) =

240 0 0)? 200
,PAm°  _ dw (aAm]_l_AmoE)a) (145)

+2
9y’ oAm"\ dy 9y’

Then, we can write Eq. 144 as follows:
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From Green'’s second identity (Eq. 143), we have
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Using Eq. 148, we can write Eq. 146 as follows
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Eq. 151 can be written as
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Now consider the 2nd order perturbation:
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The Green’s function solution of the problem in Eqs. 155-158 is given by
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Using Green'’s second identity (Eq.143), Eq. 161 becomes
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Then, we can write Eq. 162 as follows:
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From Green'’s second identity (Eq. 143), we have
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where we have used Eq. 150. Then, Eq. 165 becomes
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where we have used Eq. 150. Then, we can write Eq. 172 as follows:
2844T ¢ (0 a( N gy
Am’ (y,t): . ni_(').q(t )Kz(t )S(y,t—t )dt
(175)
Loy 1| 20" (95w |00 (A
"Il 0oAm'\ 9y oAm’( 9y
V.t Vit
where we have defined
K ()=K(y=0t)=0'l 0"+ 1_A—m° Jo” =-o'x'(¢) (176)
Am’ | 9ln Am”
y=0
If we now consider the kth order perturbation for k>3 :
2 k-1 k-1
9’ Am" 1 dAm* _ @ dAm 0 177)
9y’ n ot n, ot
Am*(y,t—0)=0 (178)

Amk(y—wx’,t):O (179)



and

[aAmk j 0o
ay yell

The Green’s function solution of the problem in Eqs. 177-180 is given by

t oo 2 k k-1 k-1 2
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we can write Eq. 181 as
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Using Green'’s second identity (Eq. 143), Eq. 183 becomes
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Then, we can write Eq. 184 as follows:
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From Green'’s second identity (Eq. 143), we have
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Using Egs. 189 and 190, we can write Eq. 187 as follows
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We can now summarize the solution of Eq. 127 as follows:

r
_ wk—lwk—z aAmk—z . Amk—z awk—lwk—z g
ay, ay’ y=0

ao (v.0)= 222 [ (1) (vt =)
0

2844T c_, , N 90" [ 9Am! 2
Am'(y,t)= : ”nifq(t )i ()8 (vt = 1) dt _2n"[aA—a;)nl(a—:1]]
it

I R Y I B L
" oAm'\ dy oAm’( 9y
Vit Vit

(191)

(192)

(193)

(194)

(195)

(196)



S=8(yt-t)= (197)
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Therefore, using Eq. 125, the solution of Eq. 123 is given by

Am(y,t) =Am’ + Am' + Am® + iAmk

k=3
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Consider the solution (Eq. 198) on the fracture plane (y = 0):
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Let us consider the sequence of time 0= <7 <t,---<t <t =t and write Eq. 200 as
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For 1 <t <t _ , if we approximate

q(t’)[l + K(t’)] ~ q(’m)[l +K‘(ZM):' =g, (1+x,,)= 2‘jé+]h (1+x,,) (202)

where q(z‘) is the flow rate from the entire surface of the fracture, Eq. 201 becomes
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Because #,=0 and ¢, =¢, we can rearrange Eq. 204 as follows:

Am(0.1)= 2844”7{ e i+ 3, (145,) a1+, t_tl}
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Dividing by ¢(t)=4(t,.,)=4q,.,
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The solution given in Eq. 206 leads to the following definition of the new superposition
time, which takes into account the effect of viscosity-compressibility variation with

(206)

pressure:

t—t

tsuperposition-new = %It)(l + Kl )\/; + ;I:qiﬂ (1 + Ki+1 ) - qi (1 + Ki):'Tt)i (207)

5.1.3. Computational Procedure
To numerically evaluate the solution in Eq. 206, we need to evaluate w, and ®,. This

requires that we compute Am’and Am', convert pseudo-pressures to pressures, and

evaluate o, and o at these pressures. Let us first consider Am" given in Eq. 193.

Following the lines used in the derivation of Eq. 205, we can write

An(0,6)= 28424Tkh {qle +2( G~ a1, } (208)

Similarly, we can write Am' in Eq. 194 as follows:

A (0.4)= 2844T\/7 {ql W +2( q.K. q,xl)ﬂ} (209)

where

(210)




For an infinite reservoir, we can assume Am"(t) = Am° (t = 0) =0 and write Eq. 210 as

follows:

l l . awO 0 awo
K'l K (tl) [w, + ( aln AmO 7. (w )Amo(t‘) * all’l Amo p ( )

The step-by-step computational procedure is the following:

1. Divide the range of the pressure, 14.7psi< p< p,, into K points (K= 100 is usually
sufficient) and generate tables of p, vs. m, and p, vs. Am,_ for k=1,2,...K .

i

2. Compute Am0<t) for i=1,2,...n+1 from Eq. 208.

i

3. Convert Am0<t) to po(l‘i) using the p, vs. Am, table (use interpolation when the

Am0<ti) value falls between Am, and Am_ ).
4. Compute o at po(l‘i) for i=1,2,...n+1 by using the correlations for the gas
viscosity and compressibility.

5. Make a table of @ vs. Am0<t) and evaluate (aa)o/alnAmO) =[Am°(aa)°/8Am°)} for

i=12,...n+1

6. Using the computed values of ®’ and (8w°/alnAm°) , evaluate k; from Eq. 211
fori=1,2,...n+1

7. Using k., compute Am‘(ti) for i=1,2,...n+1 from Eq. 209.

8. Follow steps 3 and 4 to generate a table of @, vs. Am' (t,-) .

9. Compute k, from Eq. 83 by assuming A—m"(t) = A—m"(t =0)=0 as follows:

k,=x(t)=(o] —l)lia)f +[81?1GA);° l]: (1-0))x] (212)

where k| are the values computed in Step 6.

10. Using «,, compute AmO(O,t) or AmO(O,Z)/q(t) from Eq. 205 or 206, respectively.

5.1.4. Analysis of Data by Regression

The new superposition-time solution can be used to analyze tight-gas well data by a
regression procedure. We have tested the viability of regression analysis by using the
data shown in Table 11. Figure 43 shows the rate-normalized pseudopressure drop vs.
the new and the conventional superposition times.



Table 11 - Reservoir rock and fluid properties

Formation height, h (ft) 37.15
Fracture half length, X, (ft) 100
Reservoir permeability, kK (mD) 3.584x 10+
Reservoir porosity, ¢ 0.08
Reservoir length, L. (ft) 1000
Specific gravity, SG (Ib/ft3) 0.57

Initial reservoir pressure, p; (psia) 9597
Initial reservoir temperature, T; (F) 258
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Figure 43 - Rate-normalized pseudopressure drop vs. the new and conventional
superposition times

As shown in Fig. 43, the new superposition time plot yields a straight line while the
conventional superposition time plot deviates from the straight line trend when time
(and pressure drop) increases. To develop a regression analysis procedure, we have

tested the sensitivity of the new solution to the variation of \/;xf product as shown in

Figure 44.



3.0E+08

2.5E+08

sqrt(k)xf=1.325
2.0E+08

sqrt(k)xf=1.581

1.5E+08 sqrt(k)xf=1.581F

sqrt(k)xf=1.247

1.0E+08 sqrt(k)xf=1.247F

5.0E+07 sqrt(k)xf=2.236
. +

Rate normalized pseudopressure drop

sqrt(k)xf=2.236F

0.0E+00
0 5 10 15 20 25 30 35

New superposition time

Figure 44 - Regression analysis on \/;xf product using new solution

5.2. An Approximate Solution for Fractured Horizontal Wells in Composite Reservoirs

5.2.1. Overview

The assumption of a stimulated reservoir volume (SRV) around fractured horizontal
wells leads to relatively simple transient flow models, such as the trilinear flow model
(Brown, 2009), which assume that the flow beyond SRV is negligible (and
predominantly linear). However much these models are useful to infer general flow
characteristics of fractured horizontal wells in unconventional reservoirs, they are
strictly valid when there is high contrast between the conductivities of the inner and
outer reservoir sections. When the conductivity contrast is not as high and/or when
there are fractures extending beyond the SRV (and potentially connecting to the SRV of
the neighboring wells), these idealized models should not be used. However, generating
rigorous analytical solutions for multiple-fractured horizontal wells in composite
reservoirs is not an easy task and usually leads to numerically inefficient formulations.

This project aims at generating a robust and sufficiently accurate approximate
analytical solution to be used in the study and the analysis of pressure-transient
responses of fractured horizontal wells in composite reservoirs. The solution is
intended for further extension to the study of interference effects between wells,
particularly in the existence of cross-well natural fractures.



5.2.2. Description of the model and the solution procedure

The system considered in this project is shown in Fig. 44. There are two zones of
different petrophysical properties. For the purposes of our investigation, the inner zone
represents the SRV, which has natural fractures, and the outer zone may be
homogeneous or naturally fractured. Natural fractures are accounted for by the dual-
porosity idealization.

Outer Region (non-

Inner Region
naturally fractured) 9

(naturally fractured)

2444 ) | H RALLR
r\ \ 7
""--.\_\_\_\____ /

Horizontal Well Transverse Hydraulic Fractures

Figure 44 - Fractured horizontal well in a composite reservoir

The superposition approach used to obtain the approximate solution for a fractured
horizontal well in a composite reservoir is illustrated in Fig. 45. Three solutions are
used in this procedure:

Solution I - Fractured horizontal well in an infinite-acting reservoir with the
properties of the virgin (unstimulated) reservoir

Solution II - Fractured horizontal well in a bounded reservoir with the size of the
SRV but the properties of the virgin reservoir (no natural fractures)

Solution III - Fractured horizontal well in a bounded reservoir with the size and
the petrophysical properties of the SRV.

To create composite-reservoir solution, Solution II is subtracted from and Solution III is
added to Solution I. This procedure is based on the assumption that the flux distribution
at the boundary of the inner reservoir is independent of the contrast between the
petrophysical properties of the virgin and the stimulated reservoirs. The consequences
of this assumption will have to be investigated to determine the conditions of the
applicability of the solution.
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Figure 45 - Superposition of fractured horizontal well solutions to generate the
composite-reservoir solution

We use the fractured horizontal well solution developed by Chen and Raghavan (1997)
for Solutions I, II, and IIl. Chen and Raghavan derived the hydraulically fractured
horizontal by solution by applying the superposition principle to the finite-conductivity
fracture solution of Cinco-Ley and Meng (1988). The solution is derived analytically but
the computation of the solution requires discretization of finite-conductivity hydraulic
fractures. Therefore, the results are considered as semi-analytical. Furthermore, to
avoid discretization in time, the solution is derived in the Laplace transform domain
and the results are numerically inverted into time domain by using Stehfest (1970)
algorithm. The details of the solution and the computational procedure will be given in
Greenwood (2015). We note here that, especially the computation of the bounded
system solution (Solutions II and III) requires high accuracy to prevent the drift of the
numerical results.

Figure shows a comparison of the composite-system solution (superposition model)
with the low-permeability, infinite homogeneous reservoir (virgin reservoir) and the
high-permeability (twice the permeability of the virgin reservoir), SRV (bounded
reservoir) solutions. As expected, the superposition solution tracks the results of the
high-permeability SRV model at early times and then deviates from the SRV solution to
follow the low-permeability, infinite-reservoir model.
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Figure 46 - Comparison of the results of the composite-reservoir (superposition)
solution with those of the low-permeability infinite and high-permeability SRV models.

In Figs. 47 and 48, the composite-reservoir model is verified against a commercial
numerical simulator (CMG) to find the limitations of the superposition approach used to
construct the solution. For Case 1 shown in Fig. 47, the dimensions of the stimulated
zone are 2xr by 1x. In this case, the superposition solution tracks the numerical model
results perfectly for all 4 cases. On the other hand, for Case 2 shown in Fig. 48, where
the size of the stimulated zone is 4xr by 4xs, the superposition solution over-predicts
pressure drop after the effect of the SRV boundary are felt. These results indicate that
the accuracy of the superposition solution is dependent on the size of the stimulated
zone, which affects the flux distribution at the boundary (for large stimulated zones, the
flux profiles at the boundaries of the fractured and un-fractured SRV models, Solutions
II and III, differ significantly). However in real-world examples of multiply fractured
horizontal wells, the stimulated zone is much smaller and the superposition model
predicts pressure and derivative responses within satisfactory range of the numerical
simulator.

This research will continue into Phase 2 with two important objectives. First, the
possibility of shifting the time to match the flux profiles of fractured and un-fractured
SRV cases will be considered. Second, An additional well and cross-well, stand-alone
fractures will be imposed on the solution to study the interference effects.
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Figure 47: Case 1 in which the stimulated zone is 2x¢ by 1xr. The numerical model tracks
the model perfectly for all 4 cases.
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Figure 48: Case 2 in which the stimulated zone is 4x¢by 4xr. The numerical model does
not match the research model after the boundary is reached. The research model over-
predicts the differential pressure.



Nomenclature

a

b
Crp
Crp
Ck
Cq
Cr
Ct
D

d
Dix
Dy
Dg
ds

Pbulk

Pcp
Pep
De
Dexc
PF
pi

Attraction parameter for cubic EOS, (m3)?/bar
Repulsion parameter for cubic EOS, m3
Hydraulic fracture conductivity, dimensionless
Reservoir conductivity, dimensionless

Cardinal function

Gas compressibility, psi?

Rock compressibility, psi-!

Total compressibility, psi-l, bar!

Fractal dimension

Distance between two adjacent hydraulic fractures, ft
Chebyshev differentiation matrix

Self-diffusion coefficient

Eﬁ’ectzve self-diffusion coefficient of hindered component

Spectral coefficient
Mass fractal coefficient
Fugacity, psi

Green function
Reservoir thickness, ft
Fracture height, ft

: Flux of species i per unit area of flow channels
: Molar diffusive flux of hindered component i

K-value

Permeability, md

Permeability of the inner reservoir, md

Natural fracture permeability, md

Hydraulic fracture permeability, md

Permeability of the outer reservoir, md

Matrix permeability, md

Relative permeability of phase n

Phenomenological coefficient of anomalous diffusion, md-day'-*
Anomalous permeability, mD.day'~* ftF~1

Phenomenological coefficients relating ith flow to jth force
Real gas pseudopressure, psia?/cp

Pressure, bar (in Section 1.1, 1.2), pascal (in Section 1.3), psi (in Sections 1.4,

Bulk pressure, bar
Capillary pressure, bar
Bulk critical pressure, psi
Pore critical pressure, psi
Excess suppression, bar
Excess pressure, bar
Filtration pressure, psi
Parachors of ith component



Pmin @ Minimum bottomhole pressure, psia

Pmax @ Maximum bottomhole pressure, psia

pr :  Reduced pressure

pwr @ Bottomhole pressure, psia

q : Volumetric rate, stb/day (in Sections 1.5, 2.1), scf/day
qsf : Sandface rate, scf/day

R : Universal gas constant (8.3144621 joule/mol°K)
Rs : Solution gas-oil ratio, scf/STB

rp :  Bubble radius, m

rp : Poreradius, nm

I'w : Wellbore radius, ft

S : Saturation

Sorm ¢ Residual oil saturation to miscible flooding

S :  Laplace parameter

T : Temperature, °K(in Section 1.2), R

Tep :  Bulk critical temperature, °F

Tep :  Pore critical temperature, °F

T, :  Reduced temperature

t : Time, hrs, day

%4 : Molar volume, m3/mol

WF : Hydraulic fracture width, ft

wi ;' Mole fraction of it component in aqueous phase
X : Liquid mole fraction

Xe :  Reservoir size, x-direction, ft

Xr : Hydraulic fracture half-length, ft

Xi : Mole fraction of it component in oleic phase

7] Conjugated driving force for flux of species i
y Gas mole fraction
Ve Reservoir size, y-direction, ft
Vi : Mole fraction of it component in gaseous phase
Z :  z-factor

Zi : Overall mole fraction of ith component

Greek Symbols

a : Order of fractional derivative of time

aor : Parameter defined in the model

B : Order of fractional derivative of space

Por :  Parameter defined in the model

A : Difference operator

Oij :  Binary interaction parameter

D : Dissipation function

¢ : Porosity

r : Gamma function



Lennard-Jones size parameter, nm

Specific gas gravity
Diffusivity, ft?/hr
Permeability viscosity ratio
Phenomenological coefficient
Viscosity, cp

Chemical potential, joule
Pi constant

Surface pressure, bar
Molar density, gr-mol/cc
Gas density, Ibm/ft3
Interfacial tension

Dimensionless apparent tortuosity factor

Membrane efficiency
Acentric factor
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