

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

CSM

Hindered Transport and CO₂ Huff-n-Puff in Niobrara Samples

Ziming Zhu Ph.D. Petroleum Engineering Colorado School of Mines

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Outline

- Problem Statement
- Objective
- Results & Discussion
 - Filtration Test
 - CO₂ Huff Puff Test
- Conclusion
- Future Work

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Problem Statement

Pores and pore throats of Niobrara samples might have comparable sizes with hydrocarbon molecules.

	size (diameter), nm
pore, Niobrara	1 >100
paraffins	0.4 1
aromatics	1 3

Field Observation

> Hunt and Jameson (1956), Brenneman and Smith (1958), and Hunt (1961) all noted that most of the source oils are composed of more heavy components when they are

compared with their reservoir oils.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Problem Statement

- Niobrara sample might potentially behave as a semi-permeable membrane.
- When a hydrocarbon mixture flow through Niobrara samples, what will be produced?

Hypothesis:

light components are able to flow through.

heavy components might be restricted or hindered.

size exclusion, mobility difference, ..., etc. ?

Possible result:

more light components, less heavy components will be produced.

Objective

 Explore the membrane behavior or hindrance effect of Niobrara sample on hydrocarbon transport through experiments.

- Investigate factors might affect the compositional change of hydrocarbon mixtures flowing through Niobrara sample.
 - adsorption
 - hydrocarbon species
 - pressure gradient
 - temperature
 - ...

Experimental Setup

Schematic Diagram

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Experimental Setup

- Gas Chromatograph
 Agilent 7890B
- Mini Core Holder
 Modified from In-Line Filter

Working Pressure: 0-2500 psi

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Filtration Test

- **Objective:** Does fluid composition change after flowing through Niobrara sample?
- Injection Fluid: mixture of C₁₀ and C₁₇
- Rock Samples:

Sample #	Length (in)	Diameter (in)	Pore Volume* (cc)
Niobrara #1	0.735	0.5	0.189
Niobrara #2	0.704	0.5	0.181
Niobrara #3	0.741	0.5	0.191
Niobrara #4	0.688	0.5	0.177
Niobrara #5	0.716	0.5	0.184
Niobrara #6	0.731	0.5	0.188
Berea Sandstone #1	0.738	0.5	0.475
Berea Sandstone #2	0.733	0.5	0.472
Berea Sandstone #3	0.705	0.5	0.454

*Pore volumes are calculated based on an estimated porosity of 8% for Niobrara Shale and 20% for Berea

Sandstone samples.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara #1

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara #2

Niobrara #3

Niobrara #4

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, May 3, 2019, Golden, Colorado 14

Berea Sandstone #1

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Berea Sandstone #2

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

81.75 81.50 81.25 81.00 C10 mol% 80.75 80.50 80.25 80.00 79.75 79.50 2 3 4 5 6 7 0 8 Number of Pore Volume - Injection Fluid - Effluent Fluid

Berea Sandstone #3

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

 Compare the composition of injected, produced and upstream fluid for each sample 					
	Injection	Production		Upstream	
Sample #	C ₁₀ %	Max C ₁₀ %	Change % (vs. injection)	C ₁₀ %	Change % (vs. injection)
Niobrara #1	79.41	80.14	0.73 ↑	79.17	0.24↓
Niobrara #2	79.41	80.43	1.02↑	79.00	0.41↓
Niobrara #3	79.41	80.44	1.03↑	78.92	0.49↓
Niobrara #4	80.12	80.56	0.44 ↑	79.92	0.20↓
Niobrara #5	80.12	80.20	0.08 ↑	80.05	0.07↓
Niobrara #6	80.12	80.31	0.19↑	80.03	0.09↓
Berea Sandstone #1	81.32	81.31	0.01↓		
Berea Sandstone #2	77.69	77.67	0.02↓		
Berea Sandstone #3	80.70	80.69	0.01↓		
		C ₁₀ ↑ C	17↓ in produced flu	ıid	
Niobrara S	hale	C ₁₀ ↓ C	₁₇ ↑ in upstream flເ	Jid	
	a	mount of composition	change varies betw	veen each sa	mple
Berea Sandstone no		no obvious compo	sitional change in p	roduced fluid	

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

From molecular simulation results, Niobrara sample adsorbs more C₁₇ than C₁₀.
 (collaboration with Dr. Rui Qiao, Virginia Tech)

Question:

If more C₁₇ is adsorbed, what's the main reason for the compositional change observed?

size exclusion or preferential adsorption

Solution 1:

N_C_{17 adsorbed} vs N_C_{17 missing}

Compare the extra amount of C_{17} adsorbed in Niobrara sample relative to C_{10} with the

amount of C₁₇ missing in the produced fluid relative to the injected fluid

Possible result: $N_{L_{17 adsorbed}} \ll N_{L_{17 missing}} \rightarrow size exclusion$

 $N_{C_{17 adsorbed}} \ge N_{C_{17 missing}} \rightarrow preferential adsorption$

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Calculations:

$$N_{C_{17 adsorbed}}(mol) = \frac{specific surface area \times mass}{avogadro constant} \times excess adsorption capacity$$
(1)

$$N_{C_{17\,missing}}(mol) = \sum_{effluent\,points} \left\{ \left[\left(\frac{X_{C_{17}}}{V_m} \right)_{injected} - \left(\frac{X_{C_{17}}}{V_m} \right)_{produced} \right] \times Volume \right\}$$
(2)

Note:

specific surface area = $3.88 \sim 14.31 \ m^2/g$

excess adsorption capacity $(nm^{-2}) = surface \ excess_{C_{17}} - surface \ excess_{C_{10}} \times \left(\frac{X_{C_{17}}}{X_{C_{10}}}\right)_{injected}$

$$surface \ excess_{C_{17}} = 1.8 \times 10^{-1} \text{nm}^{-2} \ surface \ excess_{C_{10}} = 5.56 \times 10^{-2} \text{nm}^{-2}$$

$$V_m(cm^3/mol) = X_{C_{10}} \times \frac{M_{C_{10}}}{\rho_{C_{10}}} + X_{C_{17}} \times \frac{M_{C_{17}}}{\rho_{C_{17}}}$$

Volume and composition of each effluent point are measured in the experiment.

Sample	N_C _{17 adsorbed} (10 ⁻⁵ mol)	N_C _{17 missing} (10 ⁻⁵ mol)	$\frac{N_C_{17 \text{ missing}}}{N_C_{17 \text{ adsorbed}}}$
Niobrara #1	0.59 – 2.17	15.33	7.06 – 25.98
Niobrara #2	0.56 – 2.08	8.89	4.27 – 15.88
Niobrara #3	0.59 – 2.17	10.88	5.01 – 18.44
Niobrara #4	0.55 – 2.04	4.84	2.37 – 8.80
Niobrara #5	0.58 – 2.12	-0.40	_
Niobrara #6	0.59 – 2.17	-0.81	-

Based on experimental and calculation results, size exclusion should exist, because

preferential adsorption alone cannot explain the fate of all missing heavy component (C_{17}).

Solution 2:

Assumption: size exclusion does not exist.

compositional difference is entirely caused by preferential adsorption. Expectation: after Niobrara samples reach adsorption saturation, there should be no more compositional changes in the produced fluid. Observation: sustaining compositional difference between the injected and produced fluid.

Solution 3:

Observation: increase of heavy component (C_{17}) in the upstream fluid of Niobrara samples.

These two observations point to the presence of size exclusion (exclusion of access of C₁₇ into certain pores of the sample), because they could not be explained solely by preferential adsorption.

Conclusions

- Filtration test results show that more light component (C₁₀) are produced than heavy component (C₁₇), demonstrating the existence of hindrance effect in Niobrara samples.
- Calculation results based on MD Simulation, observed sustaining compositional changes in the produced fluid and observed increases of heavy component (C₁₇) in the upstream fluid all support the presence of size exclusion in Niobrara samples.

CO2 Huff & Puff

- Objective: Can CO₂ mitigate hinderance effect?
- Procedure:

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara #1

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara #2

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara #3

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Niobrara #4

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

81.00 CO₂ injection 80.75 80.50 80.25 ¢ 9 80.00 79.75 C10 mol% ٥ 79.50 \$ 79.25 79.00 78.75 78.50 78.25 78.00 2 3 4 5 6 7 0 1 8 **Number of Pore Volume** - Injection Fluid - Effluent Fluid - Effluent Fluid - after CO2 soaking - Upstream Fluid - Upstream Fluid - after CO2 soaking

Niobrara #5

Niobrara #6

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Sample # —	Average Flow Rate (PV/day)			
	Before CO ₂ Huff Puff	After CO ₂ Huff Puff	After/Before	
Niobrara #1	0.44	0.55	1.25	
Niobrara #2	0.28	1.21	4.32	
Niobrara #3	0.26	0.38	1.46	
Niobrara #4	0.79	10.88	13.77	
Niobrara #5	0.25	0.18	0.72↓	
Niobrara #6	0.61	1.41	2.31	

Note: PV stands for pore volume

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Summary

Observed effects before and after CO₂ Huff Puff:

Sample #	Before CO ₂ Huff Puff	After CO ₂ Huff Puff			
	Hindrance (C_{10} % \uparrow)	Mitigation of Hindrance (C_{10} % \downarrow)	Recurrence of Hindrance (C_{10} % \uparrow)	Flow Rate ↑	
Niobrara #1	\checkmark	\checkmark	\checkmark	\checkmark	
Niobrara #2	\checkmark	\checkmark	\checkmark	\checkmark	
Niobrara #3	\checkmark	\checkmark	\checkmark	\checkmark	
Niobrara #4	\checkmark	\checkmark	X	\checkmark	
Niobrara #5	\checkmark	X		Х	
Niobrara #6	√	\checkmark	X	~	

Note: \uparrow or \downarrow of C₁₀% is compared with the initial injection fluid.

• Experimental results demonstrate CO₂ might be able to mitigate the hindrance effect and

also stimulate the production rate, while the mechanism is not clear.

Conclusion

- The existence of hindrance effect of Niobrara shale on the transport of hydrocarbon mixture has been demonstrated through experiment.
- Size exclusion, as a factor leading to hindrance effect, has been demonstrated through molecular dynamics results and experimental observations.
- Niobrara sample behaves as a semi-permeable membrane, allowing the transport of light component (C₁₀) and restricting the heavy component (C₁₇).
- CO₂ might be able to mitigate the hindrance effect and stimulate the production rate in Niobrara sample.

Future Work

- Repeat experiments using Niobrara oil.
- Investigate the mechanism of CO₂ mitigating hindrance effect.
- Investigate other factors that might affect the compositional change of hydrocarbon mixtures flowing through Niobrara sample.

Thank You Questions?

