

Research Summary

MEASURING MASS OF GAS IN-PLACE IN CORES

Siradon Prateepswangwong^{*}, Keerthana Krishanan Xiaolong Yin

Outline

□ Objective

- □ Background
- □ Summary of Previous Work
- □ Work in Progress
- □ Future work

Objective

✤ Measure mass of gas in-place (GIP) in cores (not crushed)

- Develop a method that determines mass by measuring the frequency of oscillation
- Test the method on Berea sandstone cores
- Verify that mass of GIP can be measured using the oscillation method
- Measure Gas in-Place (GIP) in other tighter rocks

$m = m_0 - m_a + m_p + \Delta m_p$

m	=	Effective Mass from Oscillation (g)
m_0	=	Mass of sample at ambient condition (g)
m _a	=	Added Mass due to co-acceleration of gas external to the sample (g)
m _p	=	Mass due to co-acceleration of gas inside pores of the sample (g)
Δm	=	Mass attributed to gas condensation and adsorption (g)

$GIP = \Delta m + m_p = m - m_0 - m_a$

 $m=\frac{k}{4\pi^2 f^2}$

 $m_a = \alpha P$

- m = Effective mass from Oscillation (g)
- f = Frequency from Oscillation (Hz)
- k = Spring constant (N/mm)

- α = Added mass coefficient (g/psi)
- P = Pressure (psi)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Conventional Rocks

$$GIP = m_p = \left(\frac{k}{4\pi^2 f^2}\right) - m_0 - (\alpha P)$$

 $m_0 =$ Mass of sample at ambient condition (g) f = Frequency from Oscillation (Hz)

- k = Spring constant (N/mm)
- α = Added mass coefficient (g/psi)

$$P = Pressure (psi)$$

Summary of Previous Work

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Apply The Oscillation Method on Unconventional Cores

- Using same procedures as Conventional Cores
- Gas-in-place (GIP) includes both Free Gas Mass (m_p) and Mass attributed to gas condensation and adsorption(Δm)
- Long transient flow \rightarrow long injecting time
 - Mass increases with time
 - Frequency decreases with time
- Unfortunately, detect no changes in frequency (Hz)

Work in Progress

Pressure = 230 psia

* Every point in Figure above represents an average of 30 measurements

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Work in Progress

Pressure = 300 psia

* Every point in Figure above represents an average of 30 measurements

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

- Replace the old vacuum pump with the better pump
- Replace the current frequency counter, oscilloscope with the better frequency measurement tools
- Inject Gas with higher pressure to increase the mass of gas
- Expect to see changes in frequency with time
- Validate that the oscillation method is applicable for measuring gas-in-place (GIP) in Unconventional rocks

RESEARCH SUMMARY

Using Oscillations to Determine Capillary Condensation in MCM-41

Keerthana Krishnan, Xiaolong Yin Collaborator: Dr. Brian Trewyn

Outline

- □ Objective & Motivation
- □ Background
- □ Materials & Equipment
- □ Methodology
- □ Results
- □ Conclusion
- □ Future work

Objective

 Measure capillary condensation in artificially created MCM-41 nanosilica material with specific pore size using the new oscillation based-gravimetric method

Motivation

 Condensation of hydrocarbon fluids in micropores and mesopores in unconventional resources is important as nanopores contribute to a significant amount of porosity in the unconventional resources

$$\Delta m = m - (m_0 - m_a + m_p)$$

m	=	Effective Mass from Oscillation (g)
m_0	=	Mass of sample at ambient condition (g)
m _a	=	Added Mass due to co-acceleration of gas external to the sample (g)
m _p	=	Mass due to co-acceleration of gas inside pores of the sample (g)
Δm	=	Mass attributed to gas condensation and adsorption (g)

Materials & Equipment

Mobile Crystalline Material (MCM-41)

- Contains Mesopores
- Typically synthesized by silica-surfactants mixtures
- Porosity can be as high as 80%
- Pore diameter typically tuned to: 2-10 nm
- High pore volume, high BET surface area

Materials & Equipment

-100000--000000---- <mark><</mark>

To account for small mass of sample, springs had to be connected in series and the total weight
(test object, weight holder and magnet) had to reduced

- To reduce the deadweight from the weight holder
- The sample was filled in the weight holder by compressing it until we reached 10.000 g

Methodology

- 1. Determine Added Mass (m_a)
 - Using Aluminum bars (Non-porous media) with the same cross sectional area as the weight holder.
- 2. Determine Pore Gas Mass (m_p)
 - Using Argon Gas (Non-Adsorbing, Non-Condensing Gas)
- 3. Determine Mass due to Capillary Condensation (Δm)
 - Using High Purity Propane Gas (99.999%) (Condensing Gas)

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Quantity adsorbed graph from spring-mass system

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Quantity adsorbed graph from spring-mass system

Conclusion

- The oscillation method successfully detected additional gasin-place from Propane – Potentially due to condensation
- We did not observe a rapid increase in mass at the location where we expect capillary condensation
- Sensitivity and procedure of the experiment need to be improved in the future The objective is to generate data comparable to Nitrogen isotherm

Replace Old Equipment

- Replace the old vacuum pump with the better pump
- Replace the current frequency counter, oscilloscope with the better frequency measurement tools

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT