

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

COLORADO SCHOOL OF MINES

NON-INVASIVE PRESSURE SENSING IN MICROFLUIDIC CHIPS USING LASER INTERFEROMETRY

Asm Kamruzzaman¹, Yusuf A. Koksal², Xiaolong Yin¹, Hossein Kazemi¹, Erdal Ozkan¹, Necati U. Kaya²

¹Petroleum Engineering Department, Colorado School of Mines, Golden, Colorado, USA.

²Kaia Corp., Denver, Colorado, USA.

- □ We propose a laser interferometry technique capable of sensing fluid pressure change in lab-on-a-chip applications noninvasively.
- Similar approaches have been proposed in the past [1]; however, we have used a different laboratory setup.
- In our study, we were able to detect fluid pressure change in a microfluidics chip; however, we are in the process of quantifying the pressure change.
- The use of laser interferometry for fluid pressure measurements in lab-on-a-chip is a viable and promising method.

[1] Fultz, D. W., and Allen, J. S., "Nonintrusive pressure measurement in microfluidic systems via backscattering interferometry," Experimental Fluids, 55, 1754 (2014).

- **Research background**
- □ Laboratory procedure
- □ Air pressure sensing in microfluidic model
- **Experimental results**
- **Discussion**

RESEARCH BACKGROUND MICRO- AND NANO-SCALE POROUS MEDIA

- Micro- and nano-scale pores and fractures exist:
 - Across the earth, biological, and material sciences disciplines.
 - Soil, organic tissues and membranes, natural and synthetic materials, and petroleum reservoir rocks.
 - Critical locations for fluid storage, transport, and chemical reactions.
- In these small pores, fluid(s) pressure determination is difficult:
 - Impedes the quantification of chemical behavior and fluid conditions.
 - Integration of on-chip pressure sensors in small space is challenging.
 - In-situ pressure determination or pressure mapping hard to achieve.

Figure: Electron microscopy images showing micro-and nanoscale pores and flow networks in petroleum reservoir rocks.

RESEARCH BACKGROUND LASER INTERFEROMETRY PRINCIPLES

Adapted laser interferometric technique:

- Helium-neon laser impinges on microfluidic chip with plane-parallel plates with varying optical properties.
- Microchannels are etched on adhesive substrate and sealed with glass cover.
- At any fluid pressure (Pressure 1), light reflects off the outer and inner surfaces of the microchannel:
 - As two spherical wavefronts.
 - Waves superposition in space to produce interference fringes; constructive vs. destructive interference.
 - Fringes are captured by a sensor.
- □ With increase in fluid pressure (Pressure 2):
 - Origin of spherical wavefront moves.
 - Fringes shift position in response to this fluid pressure change.
- □ The fringe shift is a strong function of:
 - Change in fluid density and pressure.
 - Wavefront geometry.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, May 3, 2019, Golden, Colorado

Figure: A simplified illustration of the working principle of optical interferometry and its microfluidic application.

LABORATORY PROCEDURE INTEGRATION OF INTERFEROMETRY AND MICROFLUIDICS

- □ HeNe beam impinges on microchip:
 - Has 632.8 nm wavelength and 0.48 mm beam diameter.
 - Directed by a laser quality mirror.
 - Oblique incidence angle of 40° 60° from surface normal.
- □ Transparent, air-filled microchannel:
 - Etched on 1.02 mm thick Norland Optical Adhesive 81 (NOA81) substrate; has attractive optical and physical properties.
 - Sealed by an 1.07 mm thick glass cover.
 - Characteristic dimension of 100 μm.
- Reflected beams:
 - Passed through a laser filter and a linear polarizer.
 - Interference fringes were captured by a CMOS sensor.
 - The sensor sends digitized images to a computer.

Figure: A photo of the laser interferometry laboratory setup used in this study.

LABORATORY PROCEDURE INTEGRATION OF INTERFEROMETRY AND MICROFLUIDICS (CONT.)

- An automated pump.
- Digital pressure gauges.
- A back-pressure regulator.
- An air compressor.
- □ In the future, fringe images will be processed using custom-built image processing algorithm.

Figure: A simplified schematic of the laboratory setup.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 3, 2019, Golden, Colorado

AIR PRESSURE SENSING IN MICROFLUIDIC MODEL INTERFERENCE FRINGE AND RAY-TRACE GEOMETRY

 The propagation history of the reflected waves before and during pressurization of air in the microchannel.

AIR PRESSURE SENSING IN MICROFLUIDIC MODEL ANALYSIS OF FRINGE MORPHOLOGY AND SHIFT

- □ Interference fringes were captured at 1-10 psi:
 - Fringe images were processed by image processing software.
 - Images were grayscaled and thresholded.
 - Fringe shift was quantified using fringe intensity profiles.
 - Constructive fringes seen as bright green on black background.

- □ Interpretation of fringe intensity:
 - First fringe is reflected off external glass surface and 180° out of phase.
 - Other microchannel reflected fringes are reduced in intensity.
 - First in-phase fringe has highest intensity and width.
 - Fringe shift is estimated in pixel at the sensor.

Figure: Analysis of air fringe images for fringe shift estimation.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 3, 2019, Golden, Colorado

EXPERIMENTAL RESULTS DETERMINATION OF FRINGE PROPERTIES

Results:

- (Figure a-b) For 1-10 psi, fringe intensity and width decrease for all fringe indices along the forward arrow direction of the intensity profile line, and are largely unresponsive to the pressure change.
- (Figure c) Fringe shift from one pressure to the next is fairly independent of pressure (about two pixels in average), except a small episodic spread.
- (Figure d) Consecutive bright fringe peak distances from the first out of phase fringe change parabolically since the radial fringe spacing decreases away from the source.
- (Figure e) The index of refraction increases with increasing air density.

Microchip surface

reflected fringe

Low-visibility

140

105-

70

35

Intensity

1.100

fringe

• (Figure f) Laser wavelength decreases with increasing pressure.

140

105

70

35

Intensity

Figure: Observed fringe properties.

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT

Advisory Board Meeting, May 3, 2019, Golden, Colorado

550

Distance (pixels)

275

825

DISCUSSION SENSING AIR PRESSURE VS. MEASURING AIR PRESSURE

Challenges in the experimental observations:

- The decrease in fringe intensity gives rise to successively thinner fringes.
- The fringe intensity varies from the average value; thus, a need to target only a single fringe for fringe shift calculation purposes.
- Image processing software cannot readily detect low-intensity fringes. However, fringe shift of the highest intensity peak can be reliably measured.

□ Perspectives:

 As of now, we do not have a reliable mathematical theory to relate fringe shift to fluid pressure.

Figure: Analysis of air fringe images for fringe shift estimation.

DISCUSSION MEASUREMENT REPEATABILITY

- □ Practices that have improved repeatability:
 - Reducing microchannel wall deformation with robust chip materials
 - Eliminating backscattering by making microchannel dimensions larger than the laser wavelength.
 - Incorporating an automated pressure control system that minimized pump output fluctuations.
 - Incorporating anti-vibration breadboard.

- □ We presented a non-invasive, laser interferometry-based pressure-sensing procedure for use in measuring pressure in microfluidic chips.
- U We established a verifiable relationship between optical interference and fluid properties in a microfluidic device.
- □ We identified that fringe shifts, resulting from air pressure change, can be detected; however, many critical challenges remain.
- Our proposed technique is a novel method to detect fluid pressure in micrometer pores, useful for thermodynamic phase shift analysis of fluid(s).

We thank

- □ The Unconventional Reservoir Engineering Project (UREP) Consortium at Colorado School of Mines.
- □ The US Department of Energy: Award Number STTR DE-SC0017941.

Thank you

