

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Colorado School of Mines

Research Summary COLOR-GRADIENT LATTICE BOLTZMANN MODEL FOR 3D MULTIPHASE FLOWS WITH **DENSITY RATIOS**

Theoza Nopranda, MS Petroleum Engineering

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 8, 2019, Golden, Colorado

Introduction: Reservoir vs. Pore Level Simulation

Methods Description No Traditional Assume the fluid as Computational continuum Fluid Dynamic Solve discretized classical (CFD) fluid flow equations Often need to handle implicit matrix operations 2 Lattice Assume the fluid as a group Boltzmann (LB) of molecules with different Molecule Mesoscopic particle velocities ... 4 Simulate the evolution of the molecular velocity ... distribution through time •.• ρ, T, u Explicit in time and easier to MD Traditional CFD LBM parallelize (1) (3) (2) 3 Molecular Focuses on motions of many Figure 2—Schematic of different direct numerical simulation methods Dynamic (MD) molecules Most realistic but incurs very high computational cost UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT 3 Advisory Board Meeting, November 8, 2019, Golden, Colorado

Pore Level Direct Numerical Simulation

Objectives and Methods

Objective

 To derive a 3D colorgradient lattice Boltzmann method that can handle fluid flows with density ratios

Method

 Take moments of designed LB evolution equations and show that they recover 1) continuity equation, and 2) Navier-Stokes equations

Model Development

- Original Color Gradient Model (Gunstensen et al. 1991; Latva-Kokko & Rothman 2005; Reis & Phillips 2007) contains errors in simulating flows with density ratios
- More recent developments (Ba et al. 2016) modified the evolution equations to accommodate density ratios and better recovered Navier-Stokes equations
- However the work was 2D

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 8, 2019, Golden, Colorado

Validation Case: Flows between Parallel Plates

- Validate model's ability to simulate flows with two fluids of different densities and viscosities
- The new model demonstrated very good agreement with the analytical solutions
 Original Model
 New Model

Validation Case: Static Droplet Test

- Verify that the new model has an interfacial tension that satisfies the Young-Laplace equation
- In 3D, the pressure difference across the surface of a spherical droplet is

Simulation in a Microfluidic Porous Medium

Hydrodynamic Phenomena

Advisory Board Meeting, November 8, 2019, Golden, Colorado

Conclusions

- The newly developed 3D color-gradient lattice Boltzmann model can correctly simulate fluid flows with density ratios
- It was validated with several cases with known analytical solutions
- We simulated two-phase fluid flows in a simple porous medium and captured several interesting hydrodynamic phenomena
- Improving parallel computing efficiency on the algorithm is suggested to improve the model's capability to simulate larger problems

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT Advisory Board Meeting, November 8, 2019, Golden, Colorado 9