

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

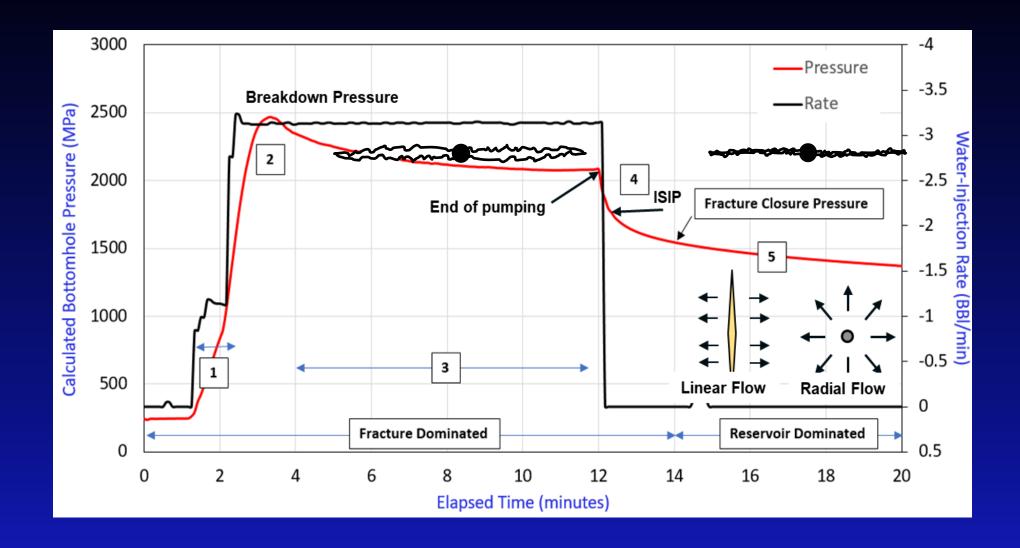
Modeling of Transient Flow of Diagnostic Fracture Injection Tests in Porous media Embedded with Discrete Fractures

Mohamed Ibrahim Mohamed

Outline

- Limitations of current methods
- Problem statement & motivation
- Geomechanics coupled reservoir flow simulation
- Semi-Analytical model development
- Semi-Analytical model development: Effect of NF
- Sensitivity analysis

Background



G-function Model

G-function developed by Nolte in 1979 based on caret's leakoff

$$v = \frac{C_L}{\sqrt{t}}$$

Assumptions:

Negligible spurt loss

Power law fracture growth

Constant fracture surface area

Constant fracture compliance and

Carter's leak-off model (1D leak-off of fluid).

v= Leak-off rate through unit area of fracture face

C_L= leakoff coefficient controlled by filter cake

t= length of time since the point of fracture has been exposed to the fracturing fluid.

- In this model leakoff is decoupled into two major categories
 - Leakoff through fracture face (flow skin)
 - Linear flow of filtrate into formation

$$\Delta p(t_j) = \Delta p_r(t_j) + \Delta p_{face}(t_j)$$

- $\Delta p_r(t_i)$ pressure drop at any time in the reservoir
- $\Delta p_{face}(t_i)$ pressure drop at any time through filter cake

$$\Delta p_r = 141.2 \frac{\mu q}{kh} \sqrt{0.000264 \frac{\pi kt}{\mu \phi c_t x_f^2}}$$

$$P_D = \sqrt{\pi t_{Dx_f}} = \sqrt{\alpha_1 \frac{\pi kt}{\mu \phi c_t x_f^2}}$$

• The pressure change during pumping with varying fracture area and varying leakoff rate

$$\Delta p(t_m) = \left(\frac{2 \times 141.2 \,\mu_f \pi R_o}{A_{p,m}}\right) R_{D,m} \,q_{lm} + 4 \times 141.2 \sqrt{0.000264 \frac{\pi \mu}{\phi k c_t}} \left[\sum_{j=1}^m \left(\frac{q_{lj}}{A_{p,j}} - \frac{q_{lj-1}}{A_{p,j-1}}\right) \sqrt{t_n - t_{j-1}}\right]$$

• Change of leakoff velocity during injection $\frac{q_{lj}}{A_{p,j}}$

 The pressure change during fracture closing is obtained by subtracting the pressure response during pumping from the total value during fracture closing

$$\Delta p(t_n) = [p_i - p(t_n)] - [p_i - p(t_m)]$$

$$\Delta p(t_n) = 4 \times 141.2 \sqrt{0.000264 \frac{\pi \mu}{\phi k c_t}} \left[\sum_{j=1}^{m} \left(\frac{q_{lj}}{A_{p,j}} - \frac{q_{lj-1}}{A_{p,j-1}} \right) \sqrt{t_n - t_{j-1}} \right] + \left[\sum_{j=1}^{n} \left(\frac{q_{Fj}}{A_{p,j}} - \frac{q_{Fj-1}}{A_{p,j-1}} \right) \sqrt{t_n - t_{j-1}} \right] - \left[\sum_{j=1}^{m} \left(\frac{q_{lj}}{A_{p,j}} - \frac{q_{lj-1}}{A_{p,j-1}} \right) \sqrt{t_m - t_{j-1}} \right] + \left(\frac{2 \times 141.2 \ \mu_f \pi R_o}{A_{p,m}} \right) (R_{D,n} q_{Fm} - R_{D,m} q_{lm})$$

- Change of leakoff velocity during Closing $\frac{q_{Fj}}{A_{p,j}}$
- Solved iteratively for $\Delta p(t_n)$ and t_n by use of $q_{Fj}=-c_fA_f[rac{d\Delta p(t_j)}{d\Delta t_j}]$

- Satisfies the physics of filtration and linear elastic fracture mechanics while preserving the material balance.
- It is related to the physical properties R_o and k, but, unlike the G-function, it does not require knowledge of a constant leakoff coefficient at any time.

- Assumption of initial value of
 - Fracture area A_f
 - Fracture face resistant R_o
 - K
- Required for iterative computation

TABLE 1—OIL AND GAS RESERVOIR PRESSURE COMPONENTS					
Input data					
Pumping time	20				
Volume inject	400				
PKN geometr					
x_f , ft	500				
$h_f = h_p$, ft (a	70				
E', psi	4x10 ⁶				
β	0.75				
Net shut-in pr	500				
φ	0.1				
μ_f , cp	0.5				
q, psi ⁻¹ Oil reservoir				1x10 ⁻⁵	
Gas reservo	2x10 ⁻⁴				
μ, cp	0.11			2210	
Oil reservo		1.0			
Gas reserv	0.022				
Oil Reservoir					
	R ₀	Δp_{face}	Δp_{R}	Δρ	
	(ft/md)	(psi)	(psi)	(psi)	
At $k=0.1$ md	0.3	284	8,766	9,070	
	3	2,840	8,766	11,626	
At $k=1$ md	0.3	284	2,778	3,062	
	3	2,840	2,778	5,618	
At $k=10$ md	0.3	284	878	1,162	
	3	2,840	878	3,718	

Motivation

- There are two folds for the problem proposed in this study
 - Approximate analytical approach to find a quick solution.
 - Claims of more accurate incorporating dynamic effect.
- Effect of randomly distributed natural fractures on the pressure transient during falloff??
- It's crucial to understand the complete picture of the pressure transient responses in the natural fractures as well as the main fracture during the falloff.

Objectives of Study

- Develop a geomechanics coupled reservoir flow simulation for diagnostic fracture injection test.
- Allow the modeling of the pressure response of minifrac before fracture closure as well
 as the falloff period after closure of the fracture.
- The semi-analytical model simulates transient flow inside a homogenous porous media that contains finite conductivity, randomly connected and disconnected, natural fractures.
- Investigate effect of the main fracture as well as natural fractures properties, such a length, azimuth, conductivity and fracture distribution on the pressure and derivative response during falloff after injection.

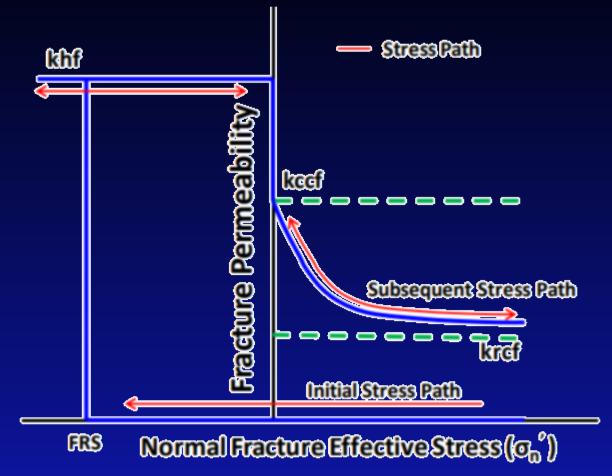
UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

Geomechanics Coupled Reservoir Flow Simulation

Numerical Simulation

Geomechanics Coupled Reservoir Flow Simulation

- As pressure increases in the regular grid, the normal stresses on the fractures increase.
- Eventually the stress breaks past the failure envelope of the rock, causing a fracture to propagate and allow fluid to flow through the fracture system in addition to the underlying matrix system.



Barton-Bandis stress permeability relationship model

Geomechanics Coupled Reservoir Flow Simulation

• GEM is a numerical reservoir flow simulation tool with a coupled geomechanics feature that can model fracture initiation, propagation, closure, and falloff behavior of a typical minifrac.

- Barton-Bandis model is used to specify the relationship between the fracture opening and the permeability of the fracture system.
- In this model a secondary fracture system is defined in the grid via the standard dual permeability formulation.

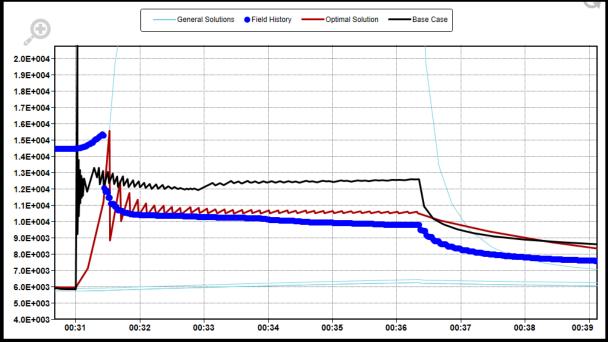
Geomechanics Coupled Reservoir Flow Simulation

- Rock Mechanical Testing for geomechanical properties:
 - Mohr Failure Envelope (Failure strength)
 - Young's Modulus
 - Poisson's ratio
 - Fracture opening stress
- Core analysis testing
 - Unconfined compressive strength UCS
 - Triaxial compressive strength under confined pressure

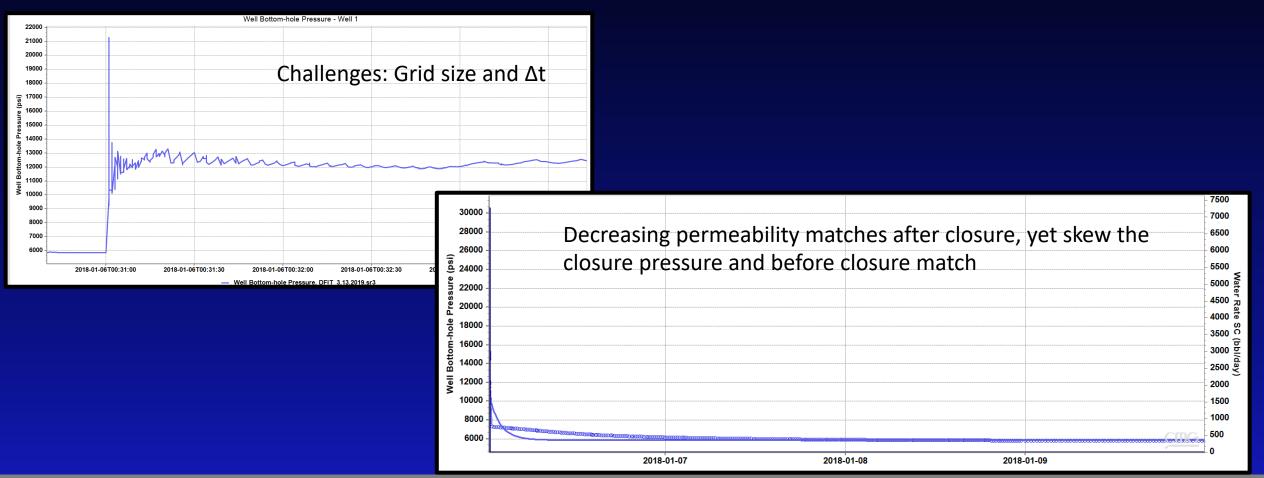
- Parameters and constraints
 - Fracture Closure Perm
 - Fracture Opening Stress
 - Residual Permeability
 - Natural Fracture Spacing
 - Permeability of Matrix
 - Permeability of Natural Fracture
 - Permeability of Hydraulic Fracture
 - Fracture Stiffness
- Objective functions to match
 - BHP

• Global error 8.84%

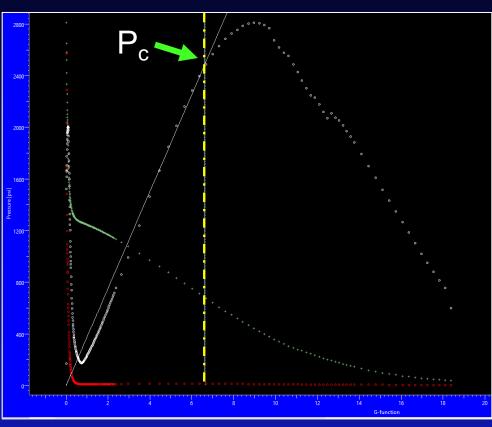


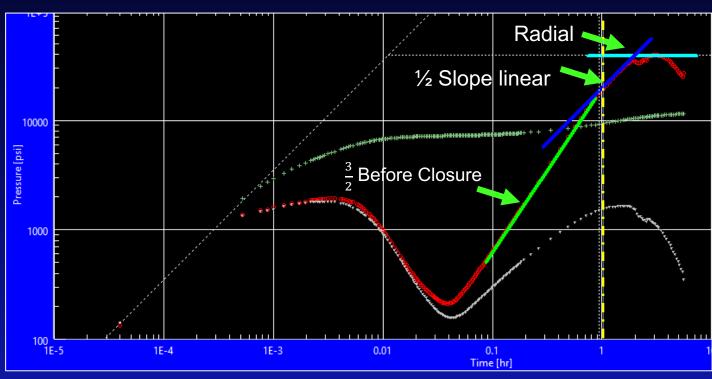


• Global error 8.84%



• DFIT results: CMG Modeling Compared to Field data

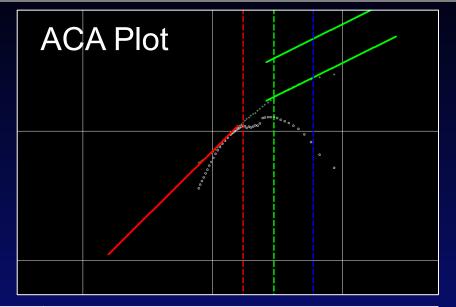




Log-Log Derivative Plot

G-Function Plot

- DFIT results: CMG Modeling Compared to Field data
 - Linear Flow was observed
 - Radial Flow was observed



	Geomechanics Coupled Reservoir Simulation	Field data
Initial Reservoir Pressure (Psi.)	5,407.0	5,644.6
Closure pressure (Psi.)	8,182.9	6,677.6
ISIP (psi.)	10,763.0	7,801.7
Kh, md.ft	4.14	1.65
Permeability, k (µd)	0.02	0.011

UNCONVENTIONAL RESERVOIR ENGINEERING PROJECT COLORADO SCHOOL OF MINES

Pressure Transient in Homogeneous Porous Media

Semi-Analytical Modeling

Background on Previous Fluid Flow Models

Dual Porosity	Discrete-Fracture-Network Models
 May be extended to multiphase flow Doesn't consider the complexity of fracture orientation Assumes uniform distribution of the fractures through the reservoir 	 Consider the complexity of fracture orientation Ignore the flow from the matrix into isolated fractures

Semi-Analytical Model

Simulate flow inside a homogenous porous medium containing randomly distributed and unconnected fracture

Assumptions

- N_{nf} number of vertical NF (distributed arbitrarily and may intercept wellbore)
- An anisotropic and homogenous infinite slab reservoir
- Principle permeabilities of K_x and K_y coinciding with the cartesian coordinate system.
- Single phase flow under isothermal conditions
- Slightly compressible fluid of constant viscosity and compressibility
- Isolated and discrete NF
- 1D and incompressible fluid inside NF and HF
- Negligible gravitational force

Semi-Analytical Model

- Three decoupled models
 - Reservoir-flow model
 - Fracture-flow model (Izadi et al. 2007)
 - Fracture Propagation Geo-mechanical Model
- Coupled using continuity of mass and pressure at the fracture matrix interfaces.

Semi-Analytical Model: Reservoir-flow Model

$$k_{x} \frac{\partial^{2} \Delta p}{\partial x^{2}} + k_{y} \frac{\partial^{2} \Delta p}{\partial y^{2}} + S_{w}(t) + S_{f}(t) = \beta \frac{\partial \Delta p}{\partial t}$$

$$t = 0 \qquad \Delta p(0, x, y) = 0$$

$$\lim_{x \to \pm \infty} \frac{\partial \Delta p}{\partial x} = 0$$

$$\lim_{y \to \pm \infty} \Delta p(t, x, y) = 0$$

$$\lim_{y \to \pm \infty} \frac{\partial \Delta p}{\partial y} = 0$$

S_w is the source function for vertical wells

$$S_{w}(t) = \gamma \sum_{m=1}^{M} q_{wm}(t) \delta(x - x_{wm}) \delta(y - y_{wm})$$

S_f is the source function for both HF and NF

$$S_{f}(t) = \gamma \sum_{n=1}^{N_{f}} \int_{0}^{L_{fn}} q_{fn}(u_{n}, t) \, \delta(x - x_{fn} - u_{n} \cos \theta_{fn}) \delta(y - y_{fn} - u_{n} \sin \theta_{fn}) du_{n}$$

Pressure drop at any point in the reservoir can be computed

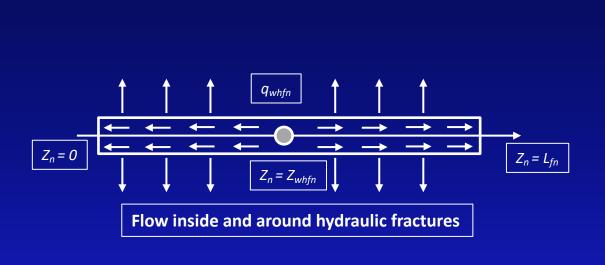
$$\Delta p(s, x, y) = C \left[\sum_{m=1}^{M} \widetilde{q}_{wm}(s) K_{0}[a_{vom}] + \sum_{n=1}^{N_{0}} \left\{ \int_{0}^{L_{fn}} \widetilde{q}_{fn}(u_{n}, s) K_{0}[a_{tfn}(u_{n})] du_{n} \right\} \right]$$

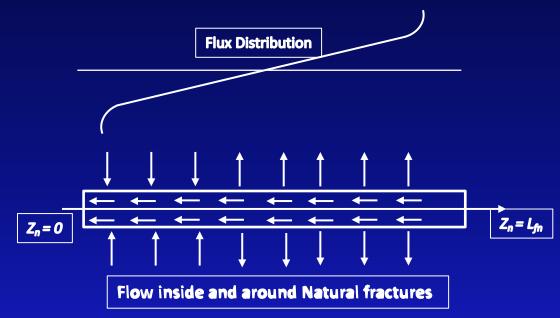
$$a_{vom} = \sqrt{\beta s} \sqrt{\frac{(x - x_{wm})^2}{k_x} + \frac{(y - y_{wm})^2}{k_y}}$$

$$a_{tfn}(u_n) = \sqrt{\beta s} \sqrt{\frac{\left(x - x_{fn} - u_n \cos \theta_{fn}\right)^2}{k_x} + \frac{\left(y - y_{fn} - u \sin \theta_{fn}\right)^2}{k_y}}$$

Semi-Analytical Model: Fracture-Flow Model

- All the fractures are assumed to be finite conductivity and incompressible
- 1D diffusivity equation with 2 source terms governs flow inside fractures
- Laplace transform in both time and space dimensions to develop fracture flow model.





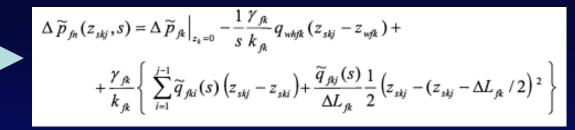
Semi-Analytical Model: Fracture-Flow Model

Fluid flow inside nth fracture in the system

$$\frac{\partial^{2} \Delta p_{fn}}{\partial z_{n}^{2}} + \frac{q_{whfn}}{k_{fn}} \delta(z_{n} - z_{whfn}) - \frac{\mu B_{o}}{\alpha_{1} k_{fn}} \int_{0}^{L_{fn}} \left\{ \frac{q_{sfn}(u_{n}, t)}{w_{hfn} h} \delta(z_{n} - u_{n}) \right\} du_{n} = 0$$

$$\Delta \widetilde{p}_{fn}(z_{skj}, s) = \Delta \widetilde{p}_{fk} \Big|_{z_{k}=0} - \frac{1}{s} \frac{\gamma_{fk}}{k_{fk}} q_{whfk}(z_{skj} - z_{wfk}) + \frac{1}{s} \frac{\gamma_{fk}}{k_{fk}} q_{wfk}(z_{skj} - z_{wfk}) + \frac{1}{s} \frac{\gamma_{fk}}{k_{fk$$

$$q_{sfn}(z_n,t) = \sum_{i=1}^n \frac{q_{sfi}(t)}{\Delta L_{fn}} \left\{ H \left[z_n - (i-1)\Delta L_{fn} \right] - H \left[z_n - i \Delta L_{fn} \right] \right\}$$



Initial and boundary conditions

$$t=0 \qquad \qquad \Delta p_f(z,0)=0$$

$$z_n = 0$$
 $\rightarrow \frac{\partial \Delta p_{fn}}{\partial z_n} = 0$

$$z_n = L_{fn}$$
 $\rightarrow \frac{\partial \Delta p_{fn}}{\partial z_n} = 0$

For Hydraulically fractured wells:

$$\sum_{i=1}^{N_{sn}} q_{sfi}(t) = q_{whfn}$$

For Natural Fractures:

$$\sum_{i=1}^{N_{sm}} q_{sfi}(t) = 0$$

Semi-Analytical Model: Coupling Fracture- and Reservoir-Flow Models

- Using continuity of mass and pressure at the fracture matrix interfaces.
- The final solution for pressure at any point of the reservoir is in the form of a finite series containing fracture rates.
- Writing solution for all the fractures segments we end up with a matrix whose solution yields fracture pressure drop and the rate distribution along the fractures.

Semi-Analytical Model: Coupling Fracture- and Reservoir-Flow Models

$$\Delta \widetilde{p}_{kj}(s) \Big|_{\text{Re } servoir} = \Delta \widetilde{p}_{fkj}(s) \Big|_{Fracture}$$

$$\widetilde{q}_{fkj}(s) \Big|_{\text{Re } servoir} = \widetilde{q}_{fkj}(s) \Big|_{Fracture}$$

 $\Delta \tilde{p}_{kj}(s)$ pressure drop at the fracture face on the reservoir side.

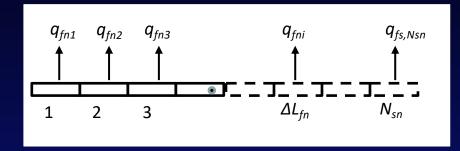
 $\Delta \tilde{p}_{fkj}(s)$ pressure drop at the fracture face on the fracture side.

 $\left. \tilde{q}_{fkj}(s) \right|_{reservoir}$ Rate at which fluid leaves the reservoir at the face of the jth segment on the kth fracture. $\left. \tilde{q}_{fkj}(s) \right|_{fracture}$ Rate at which fluid enters into the fracture at the face of the jth segment on the kth fracture.

Semi-Analytical Model: Geo-mechanical Model

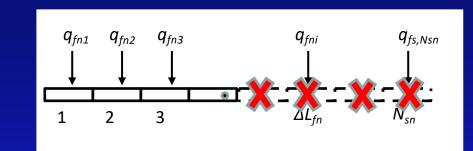
Fracture Propagation

- Update fracture length and width at each time step
- Use the new adjusted fracture length to calculate the pressure along the fracture.



Fracture Closure

- Starting at end of injection, there is still flow rate inside the fracture.
- Reservoir Pressure is higher than pressure inside fracture segments.
- Segments with pressure less than the reservoir pressure, will be removed first.



Challenges with complex fractures and NF Distribution

- Effect of isolated fractures on the pressure transient behavior
- Randomly distributed but disjointed natural fractures from hydraulically fractured wells.

