Reservoir Quality and Characterization of the Codell Sandstone, NE Silo Field Area Matt Keator MS 2023

Outline

- Denver Basin cross section and geologic background
- Production update Cain 16-63-2-11-1CH
- Subsurface maps
- Facies distribution and description
- Core analysis and XRD
- Future work

Typical Cross Section - Denver Basin

- Codell lies uncomformably below the Niobrara and above the Carlile Shale and Greenhorn Limestone
- Denver Basin is deepest in the western portion and shallows to the east
 - Formations shallowly dip to the west in the eastern portion of the basin

3

Location and Stratigraphy – Denver

- Silo Field is located in Laramie County, Wyoming
- Encompasses townships 15 and 16N and sections 63, 64, 65W
- Produces out of the Niobrara and Codell, which is a tight sand reservoir
- Source rock intervals include the Sharon Springs Member, multiple benches of the Niobrara, Carlile, and Graneros
- Oil migrates into the Codell from one of the mentioned source rock intervals

Monthly Production – Cain 16-63-2-11-1CH

Cumulative Production – Cain 16-63-2-11-1CH 240 Cumulative 160 Cumulative Oil/Water (MBBL) Gas (MMCF) Month Oil: 300,000 BBI Gas: 240 MMCF Water: 600,000 BBI

Codell Structure Map (SS) - Silo Field

- Codell subsea depth in Silo Field ranges from approximately -2000 to -3000 feet, with subsea depth in NE Silo Field near -2000 feet
- Follows general structure of Denver Basin
- Silo Field sits on the eastern part of the basin, so the Codell dips gently to the west

MUDTOC

Codell Isopach Map - Silo Field

- Codell approximately 25-30 feet thick in Silo Field
- 30 feet thick in NE Silo Field
- Thickens to the north

Cross Section - NE Silo Field

Cain 16-63-2-11-1CH

Facies Distribution

Facies 4 - Silty Sandstone Facies 5 - Low Angle Cross Strat. Facies 6 – Silty Sandstone

Facies 1

 Very fine-grained Sandy siltstone, poorly sorted, heavily bioturbated, with inoceramid fragments, with pyrite nodules, not oil stained under UV light

Facies 2

 Mudrock with mostly clay sized particles, some burrows are filled with very fine sand, with vertical fractures

Facies 3

 Very fine-grained Sandy siltstone. poorly sorted, heavily bioturbated, with inoceramid fragments, with pyrite nodules, not oil stained under UV light, higher sand content than Facies 1

Facies 4

 Heavily bioturbated, very fine-grained silty sandstone, poorly sorted, with Teichichnus and Skolithos burrows, shows oil staining in core

Facies 5

 Low angle cross stratified to ripple stratified very finegrained sandstone, moderate to wellsorted, with organic rich shale beds and clay drapes, with Planolites and Skolithos burrows, shows avid oil staining

Facies 6

 Very fine-grained silty sandstone, moderately poorly sorted, heavily bioturbated, with a higher sand content than Facies 4, shows heavier oil staining than Facies 4 under UV light

Distribution of Common Marine Ichnofacies

Typical trace fossils include: 1) Caulostrepsis; 2) Entobia; 3) echinoid borings; 4) Trypanites; 5) Teredolites; 6) Thalassinoides; 7, 8) Gastrochaenolites or related genera; 9) Diplocraterion (Glossifungites); 10) Skolithos; 11,12) Psilonichnus; 13) Macanopsis; 14) Skolithos; 15) Diplocraterion; 16) Arenicolites; 17) Ophiomorpha; 18) Phycodes; 19) Rhizocorallium; 20) Teichichnus; 21) Planolites; 22) Asteriacites; 23) Zoophycos; 24) Lorenzinia; 25) Zoophycos; 26) Paleodictyon; 27) Taphrhelminthopsis; 28) Helminthoida; 29) Cosmorhaphe; 30) Spirorhaphe.

Seilacher, 2007

Tucker, 2007

SRA Niobrara C Marl & Greenhorn Limestone

Sample ID						Source Rock Ar	nalyses										
Project/	Rock	Well	Formation	Upper	Sample	Percent	Leco	HAWK	HAWK	HAWK	HAWK	Calculated	Hydrogen	Oxygen	S2/S3	S1/TOC	Production
Sample ID	ID	Name	Name	Depth	Туре	Carbonate	TOC	S1	S2	S3	Tmax	%Ro	Index	Index	Conc.	Norm. Oil	Index
				(ft)		(wt%)	(wt%)	(mg HC/g)	(mg HC/g)	(mg CO2/g)	(°C)	(RE TMAX)	(S2x100/TOC)	(S3x100/TOC)	(mg HC/mg CO2)	Content	(S1/(S1+S2)
RHOG-191001-001	1-1 GM	Cain 16-63-2-11-1CH	Niobrara C Marl	7,475.00	Core Chunk	33.59	1.79	0.48	7.77	0.35	425	0.49	434	20	22	27	0.06
RHOG-191001-002	1-2 GM	Cain 16-63-2-11-1CH	Niobrara C Marl	7,508.30	Core Chunk	31.56	1.43	0.43	5.73	0.39	427	0.53	401	27	15	30	0.07
RHOG-191001-003	1-3 GM	Cain 16-63-2-11-1CH	Niobrara C Marl	7,530.10	Core Chunk	54.68	1.72	0.49	8.90	0.60	425	0.49	517	35	15	28	0.05
RHOG-191001-004	1-4 GM	Cain 16-63-2-11-1CH	Codell Sands tone	7,648.80	Core Chunk												
RHOG-191001-005	1-5 GM	Cain 16-63-2-11-1CH	Codell Sands tone	7,654.50	Core Chunk												
RHOG-191001-006	1-6 GM	Cain 16-63-2-11-1CH	Greenhorn Limes tone	7,677.00	Core Chunk	43.92	1.80	0.75	7.06	0.26	429	0.56	392	14	27	42	0.10
RHOG-191001-007	1-7 GM	Cain 16-63-2-11-1CH	Greenhorn Limes tone	7,679.00	Core Chunk	50.49	1.51	0.44	5.64	0.28	428	0.54	374	19	20	29	0.07

- Ro values from Niobrara sidewall cores average values near 0.5 - thermally immature
- Ro values from Greenhorn average near 0.55 – thermally immature
- S1 and S2 peaks indicate low levels of free hydrocarbons and high levels of hydrocarbons that formed during pyrolysis indicating high generating potential
- High HI and low OI indicate marine source
- Tmax below 430 (°C) represents immature organic matter

- HI and OI values indicate an oil/gas prone Type II kerogen source
- PI < 0.1 indicates thermally immature
- NiobraraGreenhorn

GeoMark Geochem Analysis

GeoMark ID	Well Nam	e	Helis Sample ID	Sample Type	Formation	Depth 1 (<u>ft</u>)	Depth 2 (ft)
RHOG-191002-001	Sandberg 16	5-63-6-31-1CH	49-021-23965	Oil	Codell Sandstone		
RHOG-191002-002	Cain 16-32-2	2-11-1CH	49-021-23371	Oil	Codell Sandstone		
RHOG-191002-003	Lerwick 17-6	63-21-16-1CH	49-021-24013	Oil	Codell Sandstone		
	0	il GC Ratios	Sandberg 16-63-6-31-1CH	Cain 16-32-2-11-1C	H Lerwick 17-63-21-16-1CH		
	Pri	istane / Phytane	1.99	2.0	1 1.91		
	Pri	istane / n C17	0.68	3 0.6	7 0.67		
	Ph	nytane / n C18	0.39	0.3	9 0.41		
	n (C18 / (n C18 + n C19)	0.52	0.5	2 0.53		
	n (C17 / (n C17 + n C27)	0.74	L 0.7	5 0.75		
	Ca	arbon Preference Index	1.02	2 1.0	2 1.00		

- In total, three produced oils were analyzed using high resolution gas chromatography (HRGC)
- The three produced oils were from the Codell Sandstone

GeoMark Denver Basin Database

Porosity Versus Fluid Saturations -

 Fluid Saturation vs. Porosity indicates a porosity range of approximately 12 - 15% for oil and water saturated pore spaces

MICP

Water Saturation

24

Flow Capacity and Storage Capacity Vs. Dept

Porosity and Permeability Vs. Depth

Flow Units

XRD (Weight%) - Codell

	Sample	Sample	TECTOSILICATES		CARBONATES			PHYLLOSILICATES (CLAY GROUP MINERALS)				ADDITIONAL MINERALS			TOTAL				CALCULATED	
Sample	Top Depth	Bottom				1	Dolomite	Dolomite												GRAIN DENSITY
Number	(ft)	Depth (ft)	Quartz	K-spar	Plag.	Calcite	(Fe/Ca+)-1	(Fe/Ca+)•2	Chlorite	Kaolinite	Illite/Mica	Mx I/S*	Pyrite	Marcasite	Apatite	TECTOSILICATES	CARBONATES	PHYLLOSILICATES	ADDITIONAL	g/cc^
1-248P	7577.05	7577.30	4.0	Tr	1.3	85.2	0.0	Tr	Tr	Tr	1.2	6.8	1.5	0.0	0.0	5.3	85.2	8.0	1.5	2.71
1-278P	7607.40	7607.60	7.9	Tr	0.8	75.8	0.0	2.2	Tr	Tr	4.2	9.1	Tr	0.0	0.0	8.7	78.0	13.3	Tr	2.69
1-297P	7626.40	7626.60	39.7	4.8	7.4	5.8	0.0	4.5	1.9	6.3	8.2	20.1	1.3	0.0	0.0	51.9	10.3	36.5	1.3	2.64
1-302P	7631.30	7631.55	57.7	4.5	6.0	11.5	0.0	3.4	1.2	6.1	0.9	7.8	0.9	0.0	0.0	68.2	14.9	16.0	0.9	2.65
1-305P	7634.00	7634.20	67.4	4.1	6.4	1.9	0.0	1.0	1.1	7.3	1.3	8.3	1.2	Tr	0.0	77.9	2.9	18.0	1.2	2.65
1-308P	7637.05	7637.25	66.8	5.1	8.6	1.5	0.0	1.1	0.6	6.8	1.0	7.6	0.9	0.0	0.0	80.5	2.6	16.0	0.9	2.64
1-311P	7640.00	7640.20	67.5	5.3	7.8	1.1	0.0	1.0	0.6	5.0	1.6	9.1	1.0	0.0	0.0	80.6	2.1	16.3	1.0	2.64
1-314P	7643.00	7643.20	66.3	5.6	8.1	1.1	0.0	1.8	0.7	4.2	1.2	9.9	1.1	0.0	0.0	80.0	2.9	16.0	1.1	2.64
1-317P	7646.00	7646.15	63.6	5.3	8.3	5.8	0.0	1.4	0.8	6.8	0.6	6.8	0.6	Tr	0.0	77.2	7.2	15.0	0.6	2.65
1-320P	7649.10	7649.35	65.4	5.4	7.8	2.2	0.0	1.1	0.6	5.7	1.0	9.8	1.0	0.0	0.0	78.6	3.3	17.1	1.0	2.64
1-323P	7652.40	7652.60	59.6	5.7	8.9	1.3	0.0	1.8	0.7	4.8	2.1	13.1	2.0	0.0	0.0	74.2	3.1	20.7	2.0	2.65
1-326P	7655.00	7655.25	65.1	5.0	6.3	5.2	0.0	0.9	1.2	5.9	1.4	7.8	1.2	0.0	0.0	76.4	6.1	16.3	1.2	2.65
1-328P	7657.00	7657.25	68.2	5.0	7.1	0.5	0.0	0.7	0.8	5.2	1.6	10.2	0.7	Tr	0.0	80.3	1.2	17.8	0.7	2.64
1-330P	7659.00	7659.20	67.7	5.4	7.2	1.1	0.0	0.9	0.7	5.9	1.3	8.7	0.5	0.6	0.0	80.3	2.0	16.6	1.1	2.64
1-335P	7664.00	7664.20	24.4	2.7	4.7	20.4	2.1	3.5	2.3	2.8	12.1	22.5	1.4	0.6	0.5	31.8	26.0	39.7	2.5	2.67
1-347P	7676.05	7676.25	19.4	1.5	2.4	35.5	2.7	2.6	1.7	3.8	10.3	19.1	1.0	Tr	Tr	23.3	40.8	34.9	1.0	2.67

Future Work

- XRF analysis (core scanned with 6-inch resolution)
- Thin Section and FESEM analysis based on interpreted facies in the Cain 16-63-2-11-1CH core
- Detailed core descriptions from the Cirque V.O. Child #30-9 and Cirque Berry Unit 13-9 wells stored at the USGS CRC
- SRA work on shale-rich intervals within the cored Codell interval
- Detailed resistivity mapping to help delineate the edge of production in NE Silo Field

Thank you to our Sponsors!

ENVERUS

In-Kind Supporting Companies

Mike Johnson & Associates

Platte River Associates, Inc

Schlumberger

COLORADO SCHOOL OF MINES MUDTOC

0

COLORADO