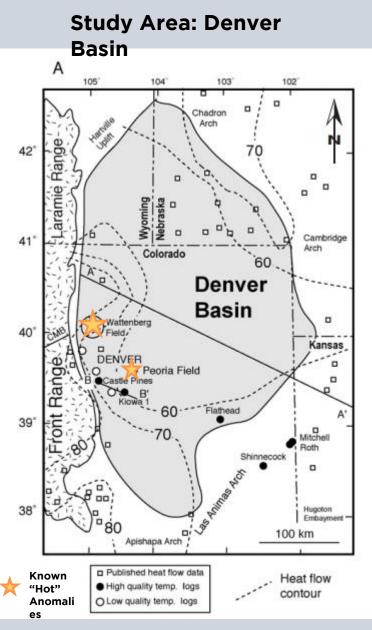
### Causes of Geothermal Temperature Anomalies In the Denver Basin: With Application to Petroleum and Geothermal Energy




Melia Eaton M.S. Spring 2024

# Outline



- I. Introduction & Study Area
- II. Hypotheses
- III. Objectives and Purpose
- IV. Dataset and Proposed Research Methods
- V. Geologic & Tectonic Overview
- VI. Timeline
- VII.Conclusions



# Introduction



- High geothermal gradients associated with immense oil & gas production worldwide Ex. Denver Basin & Wind River Basin in the U.S., Anambra Basin & Borno Basin in Nigeria, Ordos Basin in China
- Geothermal highs in the *Denver Basin* are associated with productive oil fields & geothermal energy potential
  - I. Wattenberg Field: Anomaly of about +10 °F
  - II. Peoria Field: Anomaly of +4 °F to +6 °F
  - III. Bennett Field: Anomaly of +0.5 °F

### How Do "Hot" Geothermal Anomalies Affect Hydrocarbon & Geothermal Resources?



#### Hydrocarbon Resources

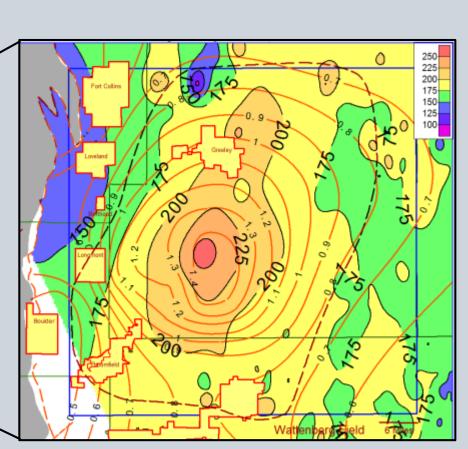
- Increases rate and controls distribution of organic matter maturity
- Higher gas-oil ratios
- Can increase reservoir porosity over time
- Higher oil gravity
- Can cause thermal cracking, generate pyrolysis gas from crude oil
- Decreases viscosity
  - = Increased Productivity

#### **Geothermal Resources**

- Local "hot" anomalies allow otherwise "cool" areas to produce geothermal energy
- Allows for indirect (electricity) and direct (heating/cooling) uses
- Higher reservoir temperatures = more diverse energy uses, larger areal extent of energy distribution
- Pre-existing hydrocarbon infrastructure in areas of anomaly can be repurposed

#### = Better Geothermal Reservoirs

# Hypotheses

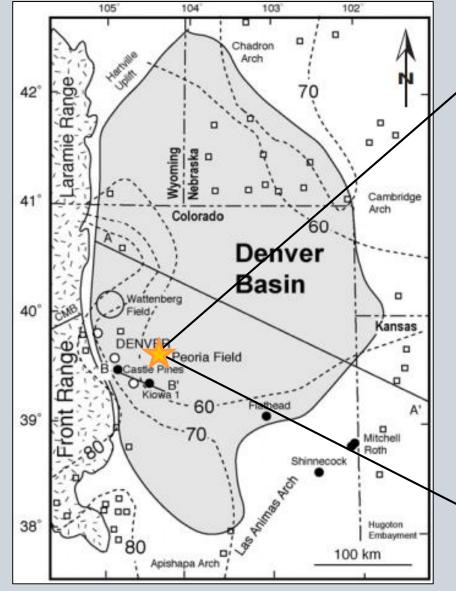


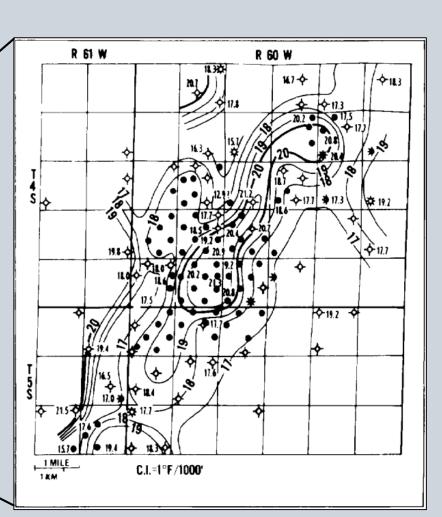

- Upward movement of hot hydrothermal fluids, i.e., saline brines, along faults, fractures, and carrier beds
- II. Mineralization of conductive minerals associated with the Colorado Mineral Belt
- III. High heat flow from intrusive igneous masses, i.e., magmatic intrusions
- IV. Differences in thermal conductivity between rock bodies hypotheses?

### Wattenberg Field

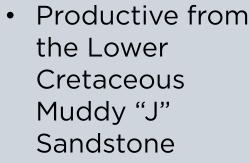








Isotherm map of Wattenberg Field; geothermal gradient map overlain by vitrinite reflectance contours. From Sonnenberg, 2016

- Productive from the Lower
   Cretaceous
   Muddy "J"
   Sandstone
- Cumulative 812 mmbo, 7.5 tcfg from over 35,000 wells (as of 2019)
  - = elevated production because of hot geothermal anomaly<sup>6</sup>


Modified from Kelley and Blackwell, 2002

### Peoria Field





Temperature gradient map of Peoria Field using BHT values from drilled wells. From Meyer and McGee, 1985



- Cumulative 47
   mmbo in place,
   about 19 mmbo
   recoverable
  - *= elevated production because of hot geothermal anomaly*

Modified from Kelley and Blackwell, 2002

MINES

MUDTOC

# **Objectives & Purpose**



Discern the cause of "hot" geothermal temperature anomalies in the Denver Basin and assess how anomalies affect hydrocarbon and geothermal energy resources

- I. Create correct, comprehensive bottomhole temperature and geothermal gradient maps of the Denver Basin
- II. Identify all locations of "hot" geothermal anomalies
- III. Create a structural framework map identifying all geologic structures in or around areas of "hot" anomalies
- IV. Synthesize all acquired data, maps, and analyses to propose the most likely cause(s) of "hot" geothermal anomalies within the Denver Basin
- V. Discuss how the cause(s) of anomalies affect hydrocarbon and geothermal energy resources within the Denver Basin
- VI. Suggest world-wide analogues and future work

### Dataset



- Denver Basin well logs & associated data
- Well logs & temperature data from White Eagle
   Exploration
- Hydrothermal fluid samples
- Thin sections & cores
- Magnetic data
- Gravity data
- Seismic data (TBD)

# Methods



### **Temperature Mapping**

- Bottomhole temperature (BHT) map of the Muddy "J" Sandstone in the Denver Basin
- Temperature corrections will be applied to temp. data from logs = Harrison Method from Harrison et. al., 1983

 $T_c = -16.51 + 0.018 \times z - 2.3 \times 10^{-6} \times z^2$ 

- Geothermal gradient map the Denver Basin
- The Corrigan method for geothermal gradient temp. correction will be used

### Structural Framework Mapping

- Mapping
   Geologic structure map of the Denver Basin
- Includes all major faults, uplifts, potential igneous bodies, etc., on or surrounding hot anomalies
- PETRA software will be used
- Locations of structural features, previously processed data will be obtained by project partners and consortium archives

# Methods



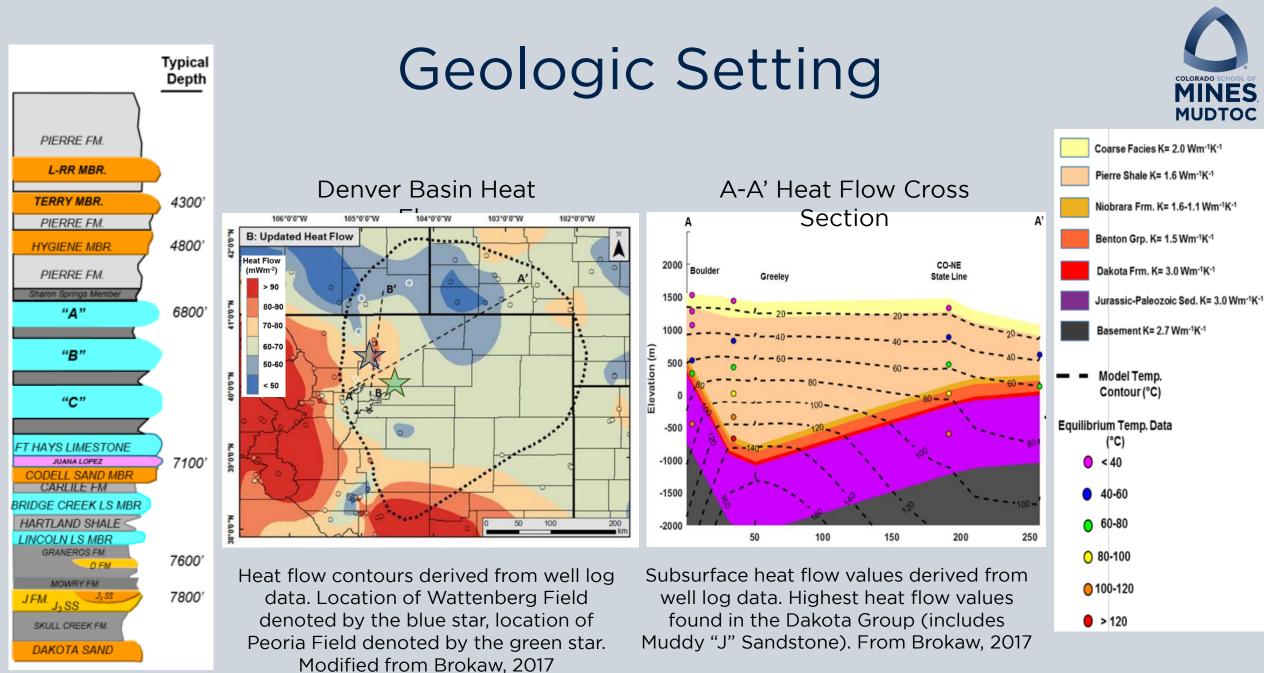
### **Thin Section Analysis**

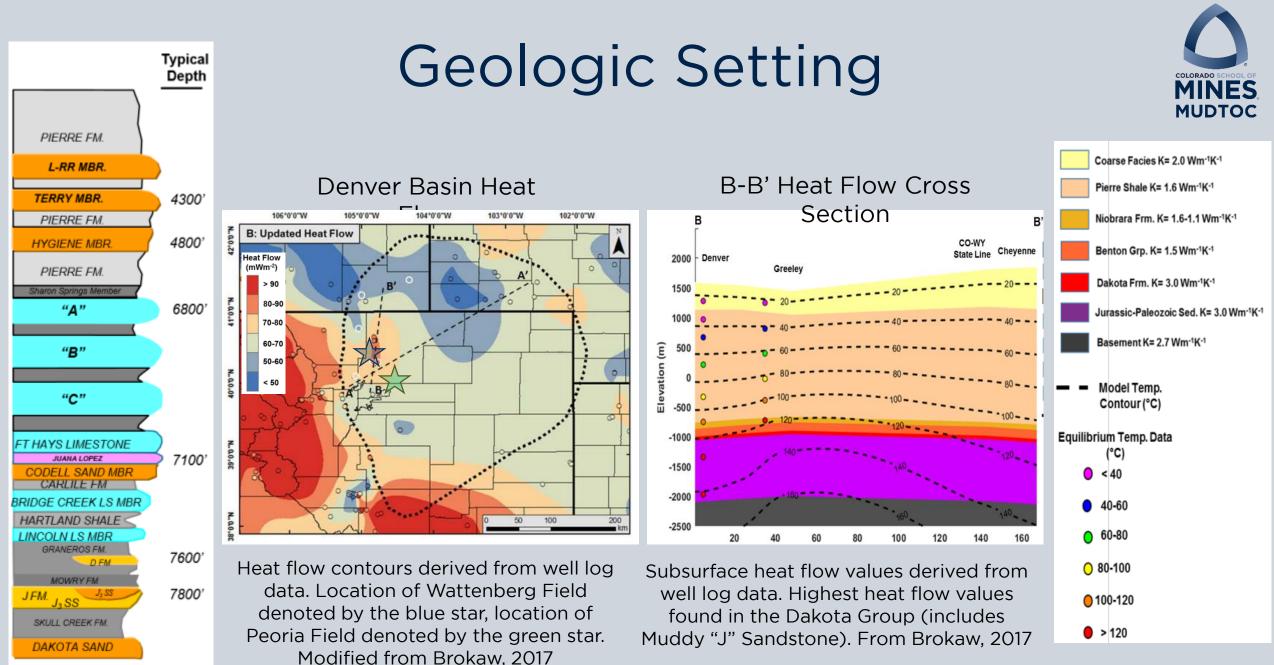
- Thin sections from Wattenberg Field Muddy "J" Sandstone cores will be obtained
- Analyzed for potential hydrothermal fluid interactions and Colorado Mineral Belt influence
- Analyzed using a polarizing microscope, XRF spectrometer, and other methods

### **Core Descriptions**

- Visual analysis of Muddy "J" Sandstone cores from Wattenberg Field
- Identifying lithologies that have high thermal conductivity
- Identifying fracture number & dimensions
- Synthesized with thin section analysis to determine thermal properties that influence "hot" anomalies

# Methods

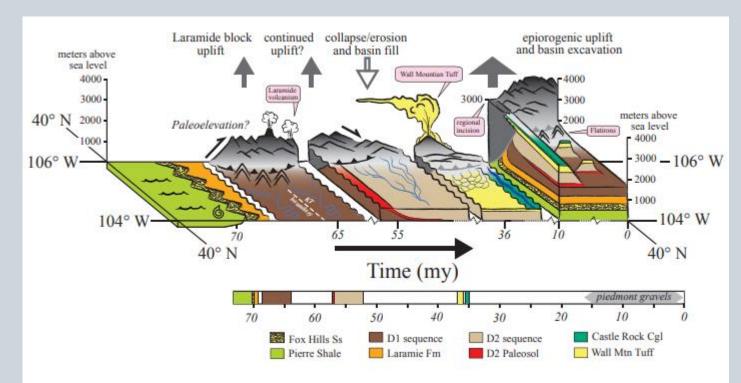




### Seismic, Gravity, Magnetic Analysis

- Visual analysis of seismic data to identify potential igneous bodies, faults, other major structures
- Gravity & magnetic datasets will substitute if seismic data is unable to be obtained
- Visual analysis of gravity & magnetic datasets to identify igneous bodies, other structures around "hot" anomalies

### **Geochemical Analysis**

- Hydrothermal fluid samples from areas of "hot" anomalies will be obtained
- Concentrations of major and minor elements determined via ion chromatography
- Chemostratigraphic logs created via XRD, XRF, and pyrolysis analysis
- Will discern Colorado Mineral Belt influence on geothermal anomalies






From Sonnenberg, 2016

### **Tectonic Setting**





Evolution of the Colorado Front Range and Denver Basin. From Raynolds et al., 2007

| Time                  | Major Tectonic Events                                                                                                                                                                    |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precambrian           | Major fault systems and shear<br>zones formed via tectonic<br>adjustments                                                                                                                |
| Cambrian - Ordovician | Transcontinental Arch & Sierra<br>Grande uplift controlled deposition                                                                                                                    |
| Silurian - Permian    | Uplift of the Ancestral Rocky<br>Mountains & Amarillo Mountains<br>Alliance Basin and Sterling Basin<br>form                                                                             |
| Triassic - Cretaceous | Western Interior Seaway formed<br>Laramide Orogeny began in Late<br>Cretaceous                                                                                                           |
| Paleogene             | Laramide Orogeny formed the<br>modern Rocky Mountains and<br>associated mountain ranges<br>Uplift caused tilting of the basin,<br>solidifying the structural<br>configuration seen today |

# Timeline



### Fall, 2023

- Gather data to create the BHT and geothermal temperature maps of Denver Basin
- Develop structural framework map of Denver Basin
- Visually analyze seismic, gravity, & magnetic datasets
- Obtain hydrothermal fluid samples and begin analysis
- Begin to synthesize all findings

### Spring, 2024

- Wrap up any unfinished data analyses
- Synthesize all maps and data to propose most likely cause(s) of "hot" geothermal anomalies
- Write thesis
- Defend thesis
- Finish all necessary thesis paper edits and submit final draft to CSM library

## Conclusions



I. In almost every case, hot geothermal anomalies are proven to enhance oil & gas production worldwide
II. In every case, hot geothermal anomalies enhance geothermal energy production and allow for varied applications

- III. Multiple hypotheses have been proposed to explain the cause of local geothermal anomalies
- IV. When the cause(s) of geothermal anomalies in the Denver Basin are determined, answer(s) will aid hydrocarbon & geothermal exploration worldwide

# Thank you to our Sponsors!





**In-Kind Supporting Companies** 



Mike Johnson & Associates







### COLORADO SCHOOL OF MINES MUDTOC

0

COLORADO