Reservoir Characterization of the Deadwood Formation, Williston Basin

COLORADO SCHOOL OF MINES MUDTOC Gabrielle Bennett MS 2024

Outline

- Geological Background
- The Deadwood Formation
- Data Located and Complied
- Study Area
- Future Work
- Why Geothermal?
- Successful Geothermal Energy Production – DEEP Earth Energy Production "DEEP"
- Hypotheses

Geologic Background-Williston Basin

CANADA

UNITE

STATE

Williston Basir

Period

System

Quaternary

Tertiary

Cretaceous

Jurassic

Triassic

Permian

Pennsylvania

Mississippia

Devonian

Silurian

Ordovician

Cambrian

Precambrian

of Years Ago)

0.01

2.6 -5.3 -23.0 -33.9 -55.8 -

65.5

99.6

- 145.5 -

201.6

251.0

299.0 -

318.0

- 359.0 -

416.0

444.0 -

488.0 -

542.0

CENOZOIC

MESOZOIC

PALEOZOIC

(ndstudies.gov)

Epoch/ Series

Holocene

Pleistocene

Aiocene Miocene

Paleocene

Upper

Lower

2000

Sea Level

5000

10.000

- North American Craton
 - >16,000 ft Phanerozoic Sedimentation

Precambrian Basement

- Framework for sedimentation and thermal patterns
- Trans-Hudson Orogeny
 - Superior Craton and Wyoming Craton

Paleozoic Sediments

- Initial Transgression in Cambrian: Clastics
 - Carbonates

Mesozoic & Cenozoic Sediments

Clastics

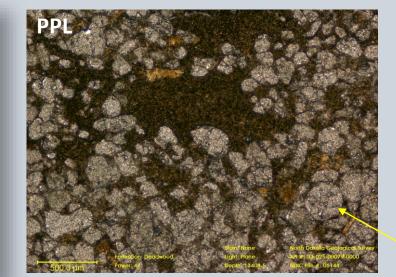
٠

Six main depositional sequences

Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, Tejas

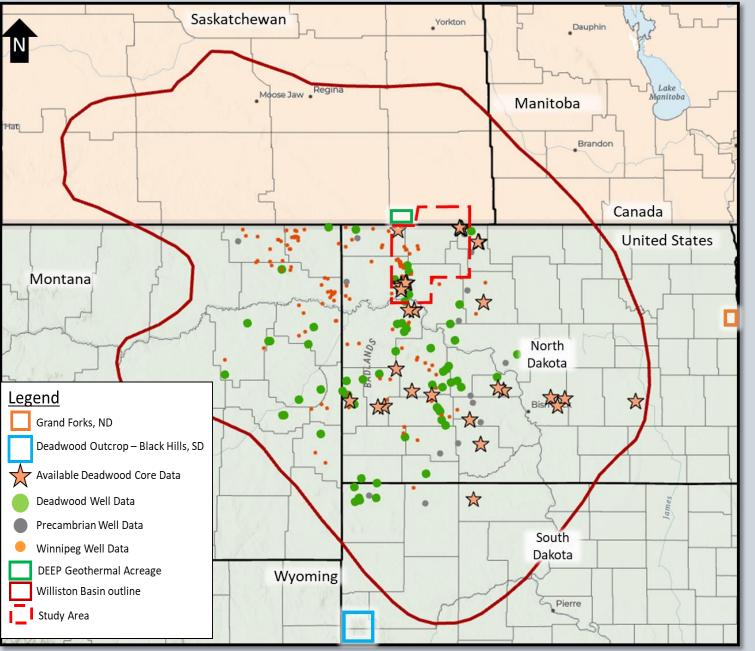
Major structural features

- Nesson Anticline
- Cedar Creek Anticline


The Deadwood Formation

- Cambrian/ early Ordovician (480 540 ma)
- Sauk Sequence
- First record of Transgression of the Phanerozoic on top of a low relief Precambrian Basement
- Dominated by Siliciclastic Sediments sourced by the Precambrian Basement
- Six members A-F
- Depositional environments:
 - Shallow marine to alluvial plains
- Key Diagnostic Mineral: Glauconite
- Ended with a major unconformity

		SILURIAN			INTERLAKE		Oil Gas	
- 444 -	a (NOE		STONEWALL		oil	
			CAN		STONY MOUNTAIN	GUNTON STOUGHTON	Oil	
		ORDOVICIAN	TIPPECANOE	BIG HORN WINNIPEG	RED RIVER	SIGGINION	Oil Gas	
					ROUGHLOCK			
I					ICEBOX		Oil	
			\sim	~~~~~	BLACK ISLAND	~~~~~~	Con	CATLOS-COMPANY CONTRACTOR
- 488 -			SAUK		DEADWOOD		Oil Gas	
- 542 -		CAMBRIAN						NUMBER OF THE
	(NDG	precambrian (\$,2009)		S' WYOMING PROVINCE	FRUCTURAL PROVIN TRANS-HUDSON OROGEN	CES SUPERIOR PROVINCE	Oil Iron	


Deadwood Outcrop in Deadwood, SD (USGS,2001)

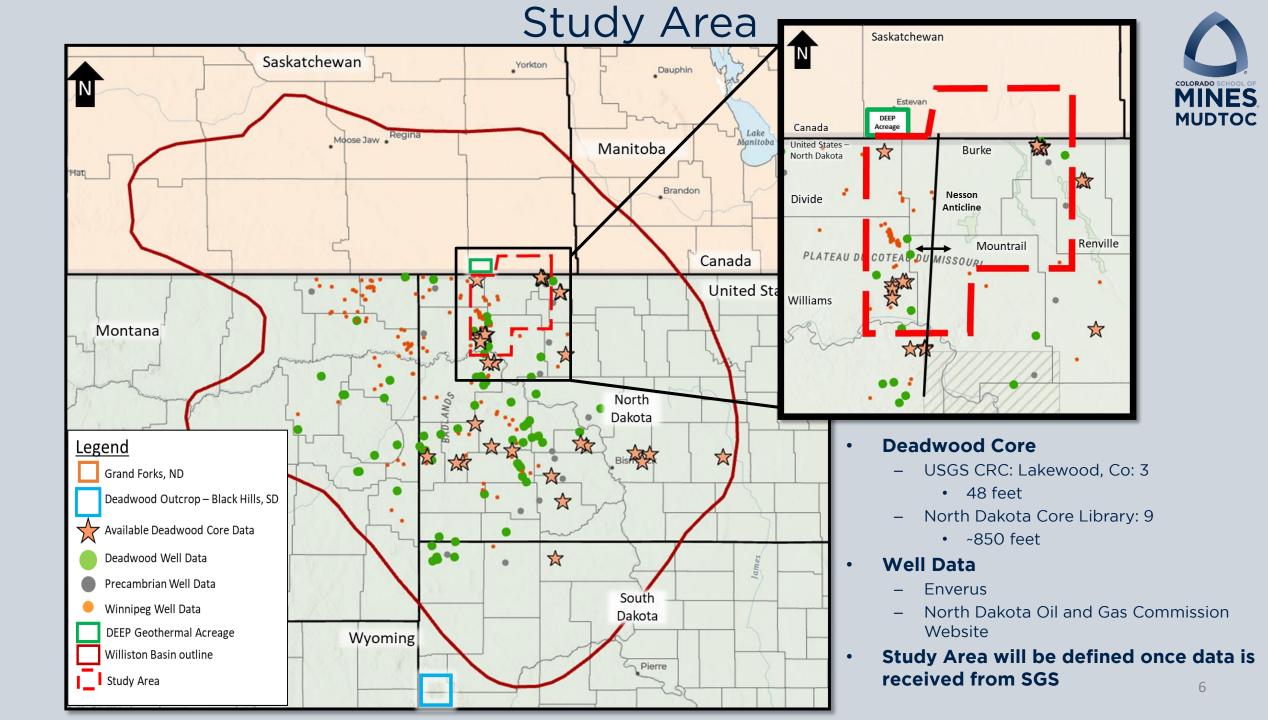
ANDREW M. HEISER #1- 13408.5' North Dakota Core Library

Data Located and Compiled

Deadwood Core

- USGS CRC: Lakewood, Co: 4
 - 159 feet
- North Dakota Core Library: 34
 - 3675 feet

Temperature Data


- SMU Geothermal Database
- Well Data
 - Enverus
 - North Dakota Oil and Gas Commission Website

Data TBD

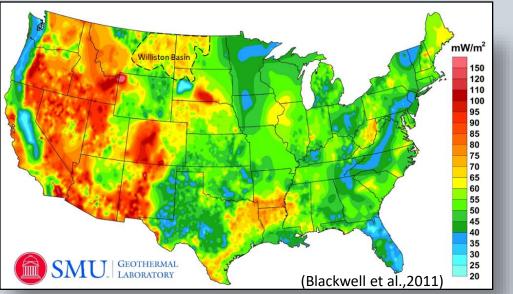
- Deadwood Core, Well and Temperature Data- Saskatchewan, Canada
 - Currently in contact with Geologists at the Saskatchewan Geological Society

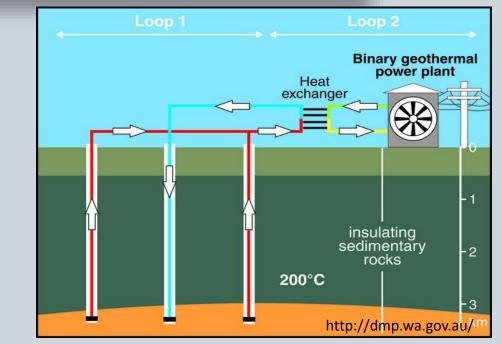
Temperature Maps

 USGS Temperature Maps of the Williston Basin

Future Work

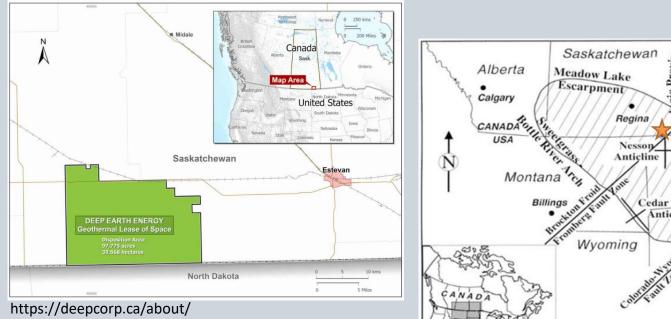
- May 3 USGS CRC Visit
- Create an Itinerary to visit Grand Forks, ND
- Continue communication with SGS in Saskatchewan
- Dive into Research
 - Core Descriptions
 - Begin XRD & XRF analysis
 - BHT Temperature Mapping
 - Continue Literature Review


- Solidify Study Area
- Finish up coursework in Fall 2023


Why Geothermal?

Low-Temperature Geothermal (LTG)

- Clean source of power and heat
 - Can utilize temperatures as low as 150°C (300°F)
 - LTG power generation is doable by using binary cycle power generation (NREL)
- Three variables
 - Heat
 - Permeable rock to transfer heat
 - Water saturation
- Applications for Geothermal Resources
 - Direct use
 - Indirect use
 - Co-Produced Resources
 - 823,000 O&G wells in the US produce hot water along with oil and gas (USDOE,2013)
- Apply O&G Exploration and Production Techniques to Geothermal Resource Production
- Cool Science



8

Successful Geothermal Production DEEP Earth Energy Production Corp. "DEEP"

approximate range o

Williston Basin

km 200

(Groenewoud and Marcia, 2020)

Well Name	Border-01	Border-02A		Border-02B		Border-03		Border-04
Туре	Vertical	Directional		Whipstock Dir.		Directional		Vertical
Depth measured / true vertical (m)	3530	3840	3496	3890	3624	3681	3560	3731
Total core cut / recovered (m)	199/195	11/6		62/57		77/77		35/35
Drilling days	38	37		26		22		30

(Groenewoud and Marcia,2020)

- Goal: Provide renewable baseload power to the SaskPower grid
- Dec 2018: Border–01 geothermal test well
 - Target Formation: Basal Clastics and Precambrian basement
 - Summer 2019: Border-01 flow test
- 2019/2020: Four additional wells drilled
- 2021: Border–05 Canada's first Horizontal Geothermal well
 - 3,500 m TVD and 2,000 m lateral
- Sustainable application of modern-day oil and gas drilling and completions techniques
- Anticipated to be the first 100% naturally sourced geothermal power facility
- Potential CO2 storage in other stratigraphic intervals within their acreage

https://deepcorp.ca/about/

Hypotheses

COLORADO SCHOOL OF MINES MUDTOC

- Where are the geothermal anomalies geographically within the Williston Basin?
- How will porosity, permeability, and other reservoir quality factors affect the geothermal resource potential?
- Where within the Deadwood Formation would be the best possible location to explore for geothermal energy resources?
- What type of subsurface technology will be best for geothermal energy development?
- Is the coproduction of geothermal energy and natural gas a potential way to develop these resources?

Thank you to our Sponsors!

In-Kind Supporting Companies

Mike Johnson & Associates

COLORADO SCHOOL OF MINES MUDTOC

0

COLORADO