Reservoir Quality and Characterization of the Codell Sandstone, NE Silo Field Area

Matthew Keator

Anticipated Graduation: August 2023

Outline

- DJ Basin cross section and geologic background
- Subsurface maps
- Production update NE Silo Helis wells
- Facies distribution and description
- Log analysis and XRD/XRF
- Reservoir Characterization

Typical Cross Section - Denver Basin

- Denver Basin is deepest in the western portion and shallows to the east
- Formations shallowly dip to the west in the eastern portion of the basin

(Sonnenberg 2015)

Location and Stratigraphy – Denver

Typical

Depth

4300'

4800'

6800'

7100'

7600'

7800'

- Silo Field is located in Laramie County, Wyoming
- Encompasses townships 15 and 16N and sections 63, 64, 65W
- Produces out of the Niobrara and Codell, which is a tight sand reservoir
- Source rock intervals include the Sharon Springs Member, multiple benches of the Niobrara, Carlile, and Graneros
- Oil migrates into the Codell from one of the mentioned source rock intervals

MUDTOC

Codell Structure Map (SS) - Silo Field

- Codell subsea depth in Silo Field ranges from approximately -2000 to -3000 feet, with subsea depth in NE Silo Field near -2000 feet
- Follows general structure of DJ Basin
- Silo Field sits on the eastern part of the basin, so the Codell dips gently to the west

Codell Isopach Map – Silo Field

- Codell approximately 25-30 feet thick in Silo Field
- 30 feet thick in NE Silo Field
- Thickens to the north

Study Wells

Monthly Production

Monthly Production

Monthly Production

Core Locations

Facies Distribution - Cain

Facies 1

 Very fine-grained sandy siltstone, poorly sorted, heavily bioturbated, with inoceramid fragments, with pyrite nodules, not oil stained under UV light

Facies 2

 Mudrock with mostly clay sized particles, some burrows are filled with very fine sandstone, with vertical fractures

Facies 3

 Very fine-grained sandy siltstone, poorly sorted, heavily bioturbated, with inoceramid fragments, with pyrite nodules, not oil stained under UV light, higher sand content than Facies 1

Facies 4

 Heavily bioturbated, very fine-grained silty sandstone, poorly sorted, with Teichichnus and Skolithos burrows, shows oil staining in core

Facies 5

 Low angle cross stratified to ripple stratified very finegrained sandstone, moderate to wellsorted, with organic rich shale beds and mud drapes, with Planolites and Skolithos burrows, shows avid oil staining

Facies 6

 Very fine-grained silty sandstone, moderately poorly sorted, heavily bioturbated, with a higher sand content than Facies 4, shows heavier oil staining than Facies 4 under UV light

UV Light Photo - Cain

Log and XRD/XRF - Cain

21

UV Light Photo - Berry Unit 13-9

Log and XRD - Berry

Distribution of Common Marine Ichnofacies

Typical trace fossils include: 1) Caulostrepsis; 2) Entobia; 3) echinoid borings; 4) Trypanites; 5) Teredolites; 6) Thalassinoides; 7, 8) Gastrochaenolites or related genera; 9) Diplocraterion (Glossifungites); 10) Skolithos; 11,12) Psilonichnus; 13) Macanopsis; 14) Skolithos; 15) Diplocraterion; 16) Arenicolites; 17) Ophiomorpha; 18) Phycodes; 19) Rhizocorallium; 20) Teichichnus; 21) Planolites; 22) Asteriacites; 23) Zoophycos; 24) Lorenzinia; 25) Zoophycos; 26) Paleodictyon; 27) Taphrhelminthopsis; 28) Helminthoida; 29) Cosmorhaphe; 30) Spirorhaphe.

Seilacher, 2007

Tucker, 2007

SRA Niobrara C Marl & Greenhorn Limestone

Sample ID						Source Rock Ar	nalyses										
Project/	Rock	Well	Formation	Upper	Sample	Percent	Leco	HAWK	HAWK	HAWK	HAWK	Calculated	Hydrogen	Oxygen	S2/S3	S1/TOC	Production
Sample ID	ID	Name	Name	Depth	Туре	Carbonate	TOC	S1	S2	S3	Tmax	%Ro	Index	Index	Conc.	Norm. Oil	Index
				(ft)		(w t%)	(wt%)	(mg HC/g)	(mg HC/g)	(mg CO2/g)	(°C)	(RE TMAX)	(S2x100/TOC)	(S3x100/TOC)	(mg HC/mg CO2)	Content	(S1/(S1+S2)
RHOG-191001-001	1-1 GM	Cain 16-63-2-11-1CH	Niobrara C Marl	7,475.00	Core Chunk	33.59	1.79	0.48	7.77	0.35	425	0.49	434	20	22	27	0.06
RHOG-191001-002	1-2 GM	Cain 16-63-2-11-1CH	Niobrara C Marl	7,508.30	Core Chunk	31.56	1.43	0.43	5.73	0.39	427	0.53	401	27	15	30	0.07
RHOG-191001-003	1-3 GM	Cain 16-63-2-11-1CH	Niobrara C Marl	7,530.10	Core Chunk	54.68	1.72	0.49	8.90	0.60	425	0.49	517	35	15	28	0.05
RHOG-191001-004	1-4 GM	Cain 16-63-2-11-1CH	Codell Sands tone	7,648.80	Core Chunk												
RHOG-191001-005	1-5 GM	Cain 16-63-2-11-1CH	Codell Sands tone	7,654.50	Core Chunk												
RHOG-191001-008	1-6 GM	Cain 16-63-2-11-1CH	Greenhorn Limes tone	7,677.00	Core Chunk	43.92	1.80	0.75	7.06	0.26	429	0.56	392	14	27	42	0.10
RHOG-191001-007	1-7 GM	Cain 16-63-2-11-1CH	Greenhorn Limes tone	7,679.00	Core Chunk	50.49	1.51	0.44	5.64	0.28	428	0.54	374	19	20	29	0.07

- Ro values from Niobrara sidewall cores average values near 0.5 thermally immature
- Ro values from Greenhorn average near 0.55 – thermally immature
- S1 and S2 peaks indicate low levels of free hydrocarbons and high levels of hydrocarbons that formed during pyrolysis indicating high generating potential
- High HI and low OI indicate marine source
- Tmax below 430 (°C) represents immature organic matter

- HI and OI values indicate an oil/gas prone Type II kerogen source
- PI < 0.1 indicates thermally immature
- NiobraraGreenhorn

GeoMark Geochem Analysis

MICP

Water Saturation

18 20

Porosity at NCS, percent

Water Saturation Calculations

35

Flow Capacity and Storage Capacity Vs. Dept

Porosity and Permeability Vs. Depth

Flow Units

Conclusions

- NE Silo Field shows good production potential based on production data and geologic reservoir characterization techniques.
- Six distinct facies were identified in the Sage Breaks Shale and Codell Sandstone section of the Cain 16-63-2-11-1CH core based on sedimentary structure and differing sand to clay percentages.
- Facies 5 and 6 show the highest amount of intergranular porosity, as well as oil staining.
- Total porosity is consistent through the core; Permeability is the main factor contributing to better flow units.
- Source rock analyses indicate a working petroleum system that is immature in the NE Silo Field area, with oil likely migrating from deeper within the field, with hydrocarbon contributions likely from Niobrara, Greenhorn/other

Thank you to our Sponsors!

In-Kind Supporting Companies

Mike Johnson & Associates

COLORADO SCHOOL OF MINES MUDTOC

0

COLORADO