Sedimentary Geothermal Play Types of the Texas Gulf Coast: Applications to Electrical Power Generation Eric Stautberg Ph.D. Candidate - May 2024

South Texas Geothermal Research Area

Digital Log Data

- 3,407 vertical wells with digital logs greater than 7,000 ft TVD provided by TGS
- Great spatial distribution of well data across entire AOI
- Deepest well: 24,220 ft TVD
- Total wells within AOI: 93,595

Map elements from Blackwell et al., 2010; Bebout et al., 1982; Condon and Dyman, 2006; and Ewing, 1991.

Bottom Hole Temperature Data Subject Geothermal Fairways

- 1,590 wells with one or multiple BHT measurement from SMU database
- Good spatial distribution of data across entire research area
- Highest recorded BHT: 466 F at 15,925 ft
- Deepest recorded BHT: 18,550 ft (462 F)

Map elements from Blackwell et al., 2010; Bebout et al., 1982; Condon and Dyman, 2006; and Ewing, 1991.

Cretaceous Type Log, Strata, and Regional

-4000 -4250

-4500 -4750

-5000 -5250

-5500

-5750

-6000

-6250

-6500

-6750

-7000

-7250

-7500

-7750

-8000

-8250

-8500

-8750

-9000

-9250

-9500

-9750

10000

10250

10500

-10750

11000

-11250

-11500

-11750

12000

12250

12500

12750

13000

-13250

13500

13750

14000

14250

14500

14750

15000

15250

15500

15750

16000

5

Geothermal Play Fairways – Dip Section

Preliminary 250° F Geothermal Play Fairway Map

South Texas Geothermal Play Types

- 1. Aptian and Albian shelf margin reefs and shoals
- 2. Aptian and Albian platform interior shoals
- 3. Maastrichtian fluvial and deltaic systems
- 4. Paleogene geopressuredgeothermal systems
- 5. Salt diapirs and adjacent reservoirs
- 6. Repurposing existing oil and gas fields

MINES

MUDTOC

Aptian Geothermal Play Types – Sligo Formation

- Play Type 1: Shelf margin complex
 - Advantages: linear trend, potential for high permeability in shelf margin facies, high temperatures (300-350 F) across shelf margin trend
 - Disadvantages: unpredictable porosity/permeability trends, depth to shelf margin facies (>16,000 ft)
- Play Type 2: Platform interior shoals

25 miles

BHT: 250 F

- Advantages: potential for high permeability facies, high temperatures (300-350 F) across shelf margin trend, shallower depths than shelf margin (12,000-15000 ft)
- Daus dyantages: unpredictable facies trends

BEG Core

Study Well

19 miles

Margin

Maastrichtian Geothermal Play Types – Olmos Formation

- Deltaic sands of the Olmos Formation
- BHTs just above 250 F across part of the research area
- Two potential play types
 - Target porous wet sands with open loop wells along trend
 - Repurposing existing oil and gas wells in AWP Field

Maastrichtian Geothermal Play Types – Repurposing AWP Field for Geothermal

- geothermal
- Use co-produced water from oil and gas production to generate electricity
- Extend wells to deeper formations

Albian Shelf Margin

Aptian Shelf Margin

250° F at 9,000 ft

250° F at 10,000 ft

Paleogene Geopressured-Geothermal Systems

- Two Wilcox geopressured fairways in the research area
- Wilcox BHTs are > 250 F south of the main Wilcox fault zone
- Multiple over-pressured sands

Wilcox Cross-Section

Diapiric Geothermal Systems

- Six salt diapirs within AOI and one outside
- Oil and gas fields on top and adjacent to each diapir
- High thermal conductivity of salt sets up two play types
 - Targeting abnormally hot reservoirs above the diapir – open loop wells
 - Targeting the diapir itself for the heat contained within – closed loop wells (coaxial or u-loop)

Repurposing Existing Oil and Gas Fields

- Edwards Formation shelf margin fields
 - Vertical wells in porous carbonate reservoirs with BHTs > 250 F
 - 300+ wells in this trend
- Olmos Formation AWP Field
 - Vertical wells in porous sandstone reservoirs with BHTs > 250 F
 - 1,000+ wells in this field
- Repurposing methods
 - Use produced water from oil and gas production to generate electricity or for a direct use application
 - Repurpose aging vertical wells for closed loop geothermal
 - Extend vertical wells into deeper formations

Closed Loop Well Designs

From Beckers, et al., 2022

Conclusions

- Six different geothermal play types within the research area
- Aptian and Albian shelf margin carbonates, Sligo is very hot (>300 F) but are buried very deep
- Aptian and Albian platform interior shoals are in a good temperature and depth window for geothermal exploration
- Maastrichtian deltaic sandstones have exploration potential along trend from producing oil/gas fields
- Geopressured-geothermal zones in the Wilcox are perspective targets for open loop geothermal
- More investigation need to understand geothermal potential of salt diapirs
- Both Lower Cretaceous and Upper Cretaceous oil and gas fields have repurposing potential (still need to investigate Paleogene fields)

Future Work and Deliverables

Potential Geothermal Play Fairways

Data Requirements	Well log data	Seismic data	Core data	Corrected BHTs	Produced fluid	Water chemistry	Cost estimates for DCE
Regional correlations, stratigraphic framework							
BHT correction, temperature mapping, play type identification							
Petrophysics/reservoir characterization of each play type							
Reservoir modeling, flow rate, thermal depletion/recharge							
Resource estimate calculations, subsurface risk assessment							
Techno-economic evaluation and recommendation							

Potential Geothermal Play Fairw

Thank you to our Sponsors!

In-Kind Supporting Companies

Mike Johnson & Associates

COLORADO SCHOOL OF MINES MUDTOC

0

COLORADO

References

- Bebout, D.G., Weise, B.R., Gregory, A.R., and Edwards, M.B., 1982, Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117, DOE Technical Report DOE/ET/28461-T2, 193 p. OSTI # 6140725.
- Bebout, D.G., Loucks, R.G., and Gregory, A.R, 1983, Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 91 Second Edition.
- Beckers, K.F., Rangel-Jurado, N., Chandrasekar, H., Hawkins, A.J., Fulton, P.M., and Tester, J.W., 2022, Technoeconomic performance of closed-loop geothermal systems for heat production and electricity generation, Geothermics, vol. 100, 21 p.
- Bureau of Economic Geology at the University of Texas at Austin, 2022, Generalized Carbonate Platform Model, https://www.beg.utexas.edu/Imod/_IOL-CM02/old_work/cm02-step01.htm (accessed April 10th, 2023)
- Blackwell, D., Richards, M., and Stepp, P., 2010, Texas Geothermal Assessment for the I35 Corridor East, for Texas State Energy Conservation Office Contract CM709, Final Report.
- Condon, S.M and Dyman, T.S., 2006, 2003 Geologic assessment of undiscovered conventional oil and gas resources of the Upper Cretaceous Navarro and Taylor groups, Western Gulf Province, Texas: U.S. Geological Survey Digital Data Series DDS-69-H, Chapter 2, 42 p.
- Ewing, T.E., and Lopez, R.F., compilers, 1991, Principal structural features, Gulf of Mexico Basin, in Salvador, A., ed., The Gulf of Mexico Basin: Boulder, Colorado, Geological Society of America, Geology of North America, Vol. J, Plate 2, Scale 1:2,500,000.
- Swanson, S.M., Karlsen, A.W., and Valentine, B.J., 2013, Geologic assessment of undiscovered oil and gas resources - Oligocene Frio and Anahuac formations, United Sates Gulf of Mexico coastal plain and state waters: U.S. Geological Survey Open-File Report 2013 – 1257, p. 6.

			lexas Gu	ilf Coast Stra	ita	
PERIOD		EPOCH	AGE	GROUP OR FORMATION	Geothermal	
AT		HOLO.				
S		PLEI.	Calabrian	Undifferentiated		
ERTIARY	GENE	PLIOCENE	Piacenzian Zanclean	Undifferentiated		
	NEOC	MIOCENE	Messinian Tortonian Serravallian Langhian Burdigalian Aguitanian	Fleming Fm.		
	LEOGENE	DOCENE	Chattian	Catahoula Fm.	And a	
F		0 K	Rupelian	Vicksburg ¹		
		CENE	Priabonian	Jackson ¹	51	
			Bartonian Lutetian	Claiborne Gp. Sparts Sand Carlos Sand	1	
	PA	ы Ш	Ypresian	Wilcox ¹	~	
		PAL	Selandian	Midway Gp.	22	
CRETACEOUS			Maastrichtian	Navarro ¹ (Olmos Fm-Escondido Fm.)	0	
		Я	Campanian	Taylor Gp. (Anacacho Ls./ San Miguel Fm./ Ozan Fm/Annona Chalk)	3	
		UPPE	Santonian Coniacian	Austin Gp./Tokio Fm./ Eutaw Fm.		
			Turonian Cenomanian	Eagle Ford ² Woodbine ³ /Tuscaloosa ¹ Washita Gp.	0	
		~	Albian	(Buda Limestone) Fredericksburg Gp. (Edwards Ls. /Paluxy ²) Glen Rose ⁴ (Rodessa Fm.)	(Lind	
	2	LOWER	Aptian	Pearsall Fm James Ls. Sligo Fm.	~	
			Barremian Hauterivian	(Travis Peak Fm.)	12	
			Valanginian Berriasian		~	
JURASSIC		~	Tithonian	Valley ¹ Sossier Fm.	J.	
	2	PE	Kimmeridgian	Haynesville Fm./ Gilmer Ls.		
	2	UP	Oxfordian	Smackover Fm. Norphlet Fm.		
		MID.	Callovian Bathonian	Louann Salt Werner Fm.	Ser	
	2	L.	Hettangian	\sim	\sim	
TRIA		UP.	Rhaetian Norian Carnian	Eagle Mills Fm.		

Modified From Swanson et al., 2013

र्दे Proven २५ Unproven

Tertiary Geopressured-Geothermal Systems

A

Bebout et al., 1982 and 1983

A'

100 mi

COLORADO SCHOOL OF

MUDTOC

Geothermal Energy Potential of Salt Diapirs

24

- Salt diapirs were first discussed as a source of ٠ geothermal energy in 1975
- High thermal conductivity of salt diapirs sets up • two possible geothermal plays types
 - 1. Utilizing the salt diapir itself with closed loop well design
 - 2. Reservoirs above the salt diapir with elevated temperatures
- Anomalous temperature field extends a lateral • distance of about 3 diapir radii from the center (Jensen, 1989)
- Internal diapir temperatures can range from 330 F at 10,000 ft to 580 F at 20,000 ft (Jacoby and Paul, 1975)
- Targeting hot reservoirs above diapirs could reduce drilling costs by ~30% when targeting similar temperatures at deeper depths (Jensen, 1989)

How do we characterize and test the energy potential in these diapirs?

Diapir locations from Condon and Dyman, 2006

Temperature at Depth Mapping (SMU Geothermal Lab)

- Maps made from 9,500+ wells with corrected BHT measurements using the SMU-Harrison temperature correction equation
- Temperature depth maps made every 1,000 ft between 8,000 ft and 14,000 ft
- 250° F is approximately the minimum temperature suitable for electrical power generation

Key question: What formations are at these depths across Texas?

Texas Gulf Coast Sedimentary Geothermal Areas of Interest

- Four areas identified for potential sedimentary geothermal research project
- South Texas contains the most elements for a research project
- North Houston has a large Wilcox fairway directly under a major metropolitan area
- East Texas has highest concentration of salt domes
- Sabine Uplift has heat anomalies in Jurassic formations which are likely too deep to study in South Texas

Key Project Characteristics	South Texas	North Houston	East Texas	Sabine Uplift
250 F @ 9,000'	\sim	×	X	\checkmark
Geopressure	\checkmark	\checkmark	X	×
K/Jr Formations	\checkmark	×	\checkmark	
Salt Diapirs	\checkmark	\checkmark	\checkmark	X

