The Geological Reservoir Characterization and Assessment of Reservoir Deliverability for Unconventional Reservoir Targets In the Hereford Field Area, Weld County, Colorado

Chad Taylor MSc Geology Student Anticipated - August 2023

Hereford Study - Data Overview

Structural Context

Hereford - Niobrara B Chalk

Petrophysical Reservoir Quality

Hereford - Niobrara B Chalk Statistics

- Niobrara B thickness ranges from 20 to 56 ft
- Average Gross Thickness = 36 ft
- B Chalk net resistivity (> or = 20 Ohm m) can range from 0 to 43 ft with an average of 25 ft within the study area
- 10 % porosity average (crush core and corrected well log)
- Highest calcite content of all Niobrara Chalk benches
- < 10% Clay Content
- Lower organic content (3% , TOC on average) in comparison to the bounding marl units
- Contains many fracture types (open, closed, and faults)

Hereford - Niobrara B Chalk

Reserves

B Chalk – Average In-Place Reservoir Volumes (Est 640ac) : Gas (High Case): 6.9 BCF (Low Case): 6 BCF Oil (High Case): 8.5 MMBO (Low Case): 7.4 MMBO

Hereford – Niobrara B Chalk

Reservoir Quality – Pore Scale

<u>XRD (wt.%)</u>

Calcite:	96.12
Dolomite:	0.07
Siderite:	0.02
Fluorapatite:	0.17
Quartz:	2.29
K-Spar:	0.00
Pyrite:	0.08
Total Clays:	1.24
Marcasite:	0.03
Illite:	0.06
Kaolinite:	1.07
Chlorite:	0.11

MICP @ 6000 psi

Porosity: **10.5%**

Pore Throat Radius (µm): .026

Perm (mD): .00856

<u>Core (Crush)</u>

Porosity: **9.66 %**

Perm (mD): .0025

Sat: 43% Oil, 47% Gas, 10% WTR

Hereford – Niobrara B Chalk

Reservoir Quality – Pore Scale

<u>XRD (wt.%)</u>

Calcite:	80.00
Dolomite:	0.00
Siderite:	0.00
Fluorapatite:	NR
Quartz:	4.00
K-Spar:	1.00
Pyrite:	2.00
Total Clays:	11.00
Marcasite:	NR
Illite:	6.00
Kaolinite:	1.00
Chlorite:	0.00

<u>MICP</u> @ 6000 psi

Porosity: **8.2%**

Pore Throat Radius (µm): .02

Perm (mD): .00315

<u>Core (Crush)</u>

Porosity: 10 %

Perm (mD): .0033

Sat: 30% Oil, 32% Gas, 38% WTR

Unconventional Production Evolution

Existing Conventional Wells

(Pre 2009)

1st Generation Unconventional Wells EOG Uncemented Liner – Sliding Sleeve Completions (SRL) (2009 - 2015) 2nd & 3rd Generation Unconventional Wells Fifth Creek & HighPoint Resources Cemented CSG w/ Plug & Perf Completions (SRL and XRL) (2015 - 2021)

Hereford Niobrara B Chalk Unconventional Reservoir Quality

Paleostructure / Temperature Relationships

- Hereford consists of a large positive paleostructure that bounds the field's southern boarder
- The field contains a main central graben trending NE-SW, defining the heart of the productive Hereford field
- Two distinct fracture systems: NE-SW orientated sheer system and a E-W orientated extensional system
- Well log derived temperature gradients suggest the primary formation temperature anomaly exists exclusively with the confines of the field's central graben
- Tmax values throughout the field show poor correlation to formation temperatures suggesting the potential for earlier heat emplacement, preceding the field's ultimate Niobrara Tmax timing

Hereford Niobrara B Chalk Unconventional Reservoir Quality

COLORADO SCHOOL OF MINES, MUDTOC

Hereford Reservoir Delivery

1st Generation Well Performance

Hereford Reservoir Delivery

1st Generation Well Performance

* 8 out of 86 total producing wells = 30% of the total field's Niobrara production

Hereford - Niobrara Reservoir Delivery

Conclusions

Niobrara Reservoir Deliverability

Niobrara B Chalk

- Structurally-controlled
 - Fracture controlled by Hereford's primary NE SW shear faults
 - Dual-porosity, with overprinting fracture dominance within the connected basement faults damage zone
 - Graben-centered, formation temperature anomaly likely connected to underlying structural complexity and hydrocarbon generation
- Damage Zone Reservoirs (DZR) Characterization and Deliverability
 - Contained primary NE SW shear fault's fracture halo
 - Fracture frequency likely enhanced by hydraulicly generated fractures during the conversion of kerogen confined within the chalk and marl matrix
 - Fracture apertures largely control pore throat fluid-flow and relative permeability
 - Reduced bubble point and subsequent relative permeability reduction facilitated by volumetric depletion during legacy fluid production
 - 1st Generation cumulative oil cut distribution appears reactive to paleo-structure, suggesting high reservoir connectivity and conventional style oil migration within the **DZR**
 - Relatively high GOR = lower bubble-point pressure and breakout and structural buoyancy contrast

Thank you to our Sponsors!

In-Kind Supporting Companies

Mike Johnson & Associates

COLORADO SCHOOL OF MINES MUDTOC

6

COLORADO