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ABSTRACT

The oil and gas industry is inherently volatile, and as a result, industry downturns force

companies to become more efficient. Companies that adapt and successfully control oper-

ating costs, while maximizing reserves, survive these downturns relatively unscathed. Un-

conventional reservoir plays can be prolific hydrocarbon producers, but require hydraulic

fracturing to enhance production. These reservoirs are generally complex, heterogeneous,

and reservoir characterization becomes extremely difficult, yet is critical for success. Utiliz-

ing time-lapse (4-D), nine-component (9-C) seismic data to characterize these reservoirs can

aid recovery. My 4-D, 9-C datasets are from the Wattenberg Field, Colorado, USA, and the

reservoir targets are chalk formations within the Niobrara Formation and the Codell member

of the Carlile Formation.

I performed a post stack sparse-layer inversion that appears to resolve the chalk benches

within the Niobrara Formation. These results are compared to published regional sequence

stratigraphic framework. In addition, this inversion was performed in a time-lapse sense

to monitor how the reservoir has changed after two years of production. These time lapse

results correlate well with microseismic events and modeled hydraulic fracture conductivity.

There is an overall increase in time lapse-change in the North-Western portion of the section

that correlates with higher production.

Analysis and interpretations of seismic data are critical to successful reservoir character-

ization, but when there are dataset issues (pertaining to acquisition and/or processing) this

leads to incorrect interpretations. In addition to the post stack inversion, I expose errors in

the H1 orientation for the Monitor 1 survey (acquired immediately post-hydraulic fracturing)

that are consistent enough to produce coherent converted-wave (C-wave), and shear-wave

(S-wave), reflection signal on the crossterms after rotation to radial-transverse coordinates.

I then utilize two scanning methods to estimate the H1 azimuth orientation for each receiver
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gather. All three surveys were then re-rotated into radial-transverse coordinates with the

appropriate H1 orientation azimuths.
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CHAPTER 1

INTRODUCTION

The Wattenberg Project has been the primary focus of the Reservoir Characterization

Project (RCP) research consortium at the Colorado School of Mines since the fall of 2013.

This is an integrated effort between Petroleum Engineering, Economics, Geology and Geo-

physics and a collaborative effort with Anadarko Petroleum Corporation (APC). The objec-

tive of this research is to conduct dynamic reservoir characterization to further understand

how to increase the recovery factor in the Niobrara Shale Reservoir, Wattenberg, Colorado.

This project study area is located in Weld County, approximately 35 miles North of Denver,

Colorado (Figure 1.1). The development of recommended workflows that utilize time-lapse

(4-D) multicomponent seismic data is a critical factor of this project’s objective and a topic

of this thesis.

4-D, nine-component (9-C) seismic data have the ability to characterize fracture networks,

stress changes, and to potentially increase the hydrocarbon recovery factor from unconven-

tional reservoirs (Riazi and Clarkson, 2017; Farfour and Yoon, 2016). Potential value added

from 4-D 9-C data lies in the ability to detect spatial and temporal changes in the induced

fractures within the reservoir from shear-wave (SS or S-wave) and converted-wave (PS or C-

wave) splitting, Amplitude-Versus-Azimuth (AVAZ) analyses, and Velocity-Versus-Azimuth

(VVAZ) analyses. In addition, time-lapse compressional-wave (PP or P-wave), C-wave and

S-wave azimuthal travel time analysis of full azimuth and offset data is a good monitoring

tool of stress field and fracture variance.

In this project, the unmigrated, fully processed P-wave, C-wave and S-wave gathers from

the Turkey Shoot surveys were sorted into Common Offset, Common Azimuth (COCA)

volumes to assess the travel time variance within the reservoir. The preliminary analysis

shed light on issues with the Monitor 1 shear-wave data. The S-wave crossterms (RT, and
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TR) and the C-wave crossterm (T) for this survey appeared as scaled down versions of the

principal components, where this energy could not be attributed to anisotropy. Initially, the

scaled down energy, or cross-component leakage, was attributed to surface conditions present

during acquisition.

This thesis identifies the anomalous S-wave and C-wave reflections (cross-component

leakage) on the time-lapse 9-C seismic, exposes and determines the cause of the anomalous

signal, recreates this signal with prestack modeling, then estimates corrections to properly

rotate the prestack data into radial-transverse coordinates. Standard 9-C and 3 component

(3-C) multicomponent data processing steps are proposed. The corrected data are then

compared to the original field data.

The second portion of this thesis details a thin-bed reflectivity inversion approach for

reservoir characterization. For controls, both a well data derived synthetic and a simple

wedge model are run through both a thin-bed reflectivity inversion and a post stack model

based inversion. Results of the synthetic inversions area analyzed. Once confidence in

the inversion is established, the inversion is performed on field data, both in a static and

dynamic sense. The static inversion is related to geology, and the dynamic inversion results

are interpreted with regard to hydrocarbon production.

I begin with a general literature review regarding multicomponent receiver orientation

and post stack seismic inversion. I then summarize data availability and details of the study

area, provide an overview of the geology, and background theory necessary for this thesis.

Chapters 2 and 3 discuss the multicomponent receiver orientation, while Chapters 4 and 5

detail the thin-bed reflectivity inversion.

1.1 Literature Review

The first main topic discussed in this thesis is multicomponent receiver rotations. Al-

though P-wave energy has been the dominant component in exploration seismology, the use of

both vertically and horizontally polarized sources and multicomponent receivers has become

more common (Tatham and McCormack, 1991). The radial-transverse coordinate system is
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Figure 1.1: The Wattenberg Field location is shown within the green colored shade. The
area specific to this study is in the southern part of the Wattenberg Field (RCP, 2017).

essential for processing and interpretation of multicomponent data (Gaiser, 1999). Simmons

and Backus (2001a) also illustrate the important concepts of the radial-transverse coordinate

system and its application in detecting shear-wave splitting. Grossman and Couzens (2012)

present a case of improper rotations leading to misinterpretations and suggest an automated

receiver rotation. Additional rotation methods are discussed in Gaiser (2003), Nagarajappa

et al. (2013) and, Burch et al. (2005).

The second topic in this thesis is a P-wave post stack thin-bed reflectivity inversion.

Direct inversion comes in many forms: direct inversion for impedance (Turin, 1957), recur-

sive trace integration (Lindseth, 1979), layer stripping (Goupillaud, 1961; Robinson, 1978),

among others. The most commonly used inversion within RCP is a model based inversion

(Cooke and Schneider, 1983; Russell and Hampson, 1991), which has been used as Utley

(2017), Copley (2018), Harryandi (2017), White (2015), MacFarlane (2014), among others.

The thin-bed reflectivity inversion (which does not require an initial model) attempts to es-

timate bed thickness and reflectivity in the frequency domain and has been popular among

Puryear and Castagna (2008), Portniaguine and Castagna (2004, 2005), Chopra et al. (2006),

and others. This type of inversion has also been conducted in the time domain and has been

published by Simmons and Backus (1994), Simmons and Backus (1996), Zhang and Castagna
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(2011), Chen et al. (2001), and others.

1.2 Data Availability

Data provided by APC and RCP includes: microseismic, well logs, cores, tracer data,

DFIT, completion data, production data, and a time-lapse 9-C seismic data that includes

one baseline survey and two monitors (Figure 1.2). The 4-D, 9-C surveys were acquired

over the Wishbone section after drilling of 11 horizontal wells (Baseline), immediately after

completion and hydraulic fracturing (Monitor 1), and after two years of production (Monitor

2) (Figure 1.3). Each survey was acquired with a single layout of 3-C geophones. Horizontal-

receiver H1 was oriented at a nominal azimuth of H1 = 0◦ (North), which paralleled the

receiver lines. Compass headings were recorded for the horizontal vibrators, S1 and S2,

at each shotpoint location. C-wave and S-wave data were processed in radial-transverse

coordinates assuming H1 = 0◦, and using the measured S1 azimuth (with S2 perpendicular)

for the S-wave source data (Gaiser, 1999; Simmons and Backus, 2001b).

The crossterms were not migrated, thus, the premigrated fully processed gathers were

used for the multicomponent analysis. The migrated P-wave data were inputs into the thin-

bed reflectivity inversion. Data processing of the three surveys was done commercially and

followed a standard 4-D time-processing flow shown in Figure 1.4.

The horizontal wells trend North-South semi-perpendicular to the local maximum stress

direction of N70◦W. A schematic cross section showing the idealized horizontal well place-

ment is shown in Figure 1.5. Each well is numbered by the chronological order of drilling.

Well spacing is variable. Average depth separation between the Niobrara C chalk and the

Codell sandstone is 150 feet. Lateral extent of each of the wells is a little over 1 mile, with

337 stages completed in the section. 10 horizontal wells were stimulated using sliding sleeve

and 1 horizontal well was stimulated using a plug-n-perf system. Three wells (7N, 8C, and

9N) in the section were completed with a zipper fracture. The zipper fracture process frac-

tures adjacent wells in a sequence which allows one well to hold fracture pressure while the

adjacent well is hydraulically fractured. Every well was hydraulically fractured using cross-
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Figure 1.2: Map view of data availability (RCP, 2017).

Figure 1.3: Timeline of data acquisition (RCP, 2017).
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link gel in the first five stages, on average, and slickwater for the remaining stages in the

well. The wells were hydraulically fractured and stimulated from East to West. In summary,

there is large variability in well placement and fracture treatment.

Figure 1.4: Processing sequence for all components

1.3 Geologic Overview

Before any seismic interpretation it is extremely critical to understand the data limita-

tions. It is equally important to understand the basic geologic history before interpretation.

This section will provide a basic overview of the geologic history of the Wattenberg field and

specifics within our study area.

The Wattenberg Field is the most prolific portion of the larger Denver Julesberg (DJ)

Basin. Encompassing 70,000 square miles, the DJ Basin is bounded on the west by the

Colorado Rocky Mountains and extends to Wyoming, Nebraska and Kansas. This basin is an

asymmetric foreland basin that is steeply dipping to the west and gently dipping to the east

(Figure 1.6) (Higley, Debra K and Cox, 2007). Reaching an approximate area of 1600 square

miles, the Wattenberg Field has been in production since the 1970s. Early conventional

development focused on gas production within the Lower Cretacous D and J Sandstone

(shown in Figure 1.7 at depths 7600-7800ft). As production progressed in the Wattenberg
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Figure 1.5: Cross section view through A-A’ providing relative well locations. Notice the
variability in well placement both spatially and in depth. A zipper fracture was conducted
with wells 9N, 8C and 7N.

Field, it was realized that the field had multiple pay intervals increasing the reserves. As

unconventional development took flight, the focus shifted to the Niobrara Formation and

Codell Sandstone of the Carlile Formation (shown in Figure 1.7 at depths 6800-7100ft and

colored blue in Figure 1.6). These reservoirs are considered unconventional due to their low

matrix porosity and permeability and require hydraulic stimulation for production.

Both the Niobrara Formation and the Codell Sandstone were deposited in the Western

Interior Cretaceous (WIC) Seaway (Figure 1.8). This was an asymmetric foreland seaway

that extended from the Arctic to the Gulf of Mexico. The Niobrara Formation was deposited

during higher sea level conditions which resulted in coccolith-rich carbonate sediment (Smith,

2015; Sonnenberg, 2013). The sea level and climate was in constant fluctuation during this

depositional period. During times of transgression, warmer gulf currents deposited cocolith-

rich carbonate chalks and during regression cooler currents from the north deposited anoxic

marls (Figure 1.9). This formation is composed of inter-bedded chalks and marls and ranges

in total thickness from 200-400ft with the individual benches ranging 30-50ft. Although
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difficult to interpret on well logs, the chalks can be identified with higher resistivity, lower

gamma ray and higher permeability and porosity.

The Codell Sandstone was regionally deposited in low stand conditions in the Eastern

portion of the WIC seaway. The sandstone is a hummocky, cross-stratified, bioturbated, clay-

rich siltstone that was deposited in the eastern portion of the seaway and is age equivalent

to the Eagle Ford Shale. On well logs the gamma ray appears as a dirty sand/shale, the

resistivity ranges from 4-6 ohmms, porosity ranges from 12-16% and permeability is usually

greater than 0.01 mD (Smith, 2015).

Figure 1.6: West to east cross section through the DJ Basin (Sonnenberg, 2013).

The tectonics responsible for the formation of the DJ Basin begin with subsidence from

the WIC Seaway and the deposition of the Fountain Formation in the Late Pennsylvanian.

The Laramide Orogeny (67.5-50 Ma) was a period of compression resulting in basement

involved, right lateral wrench faulting that run Southwest-Northeast (Sonnenberg, 2013).

Associated with the wrench fault zones are high concentrations of normal faults. During

the mid-Tertiary, a period of extension caused the previously compressed basin to adjust.

The extensional stresses formed a series of grabens. Figure 1.10 shows a fault map over the

Wishbone section, the two parallel faults in the middle of the section is referred to as the
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Figure 1.7: Generalized stratigraphic column of the DJ Basin and the modified stratigraphic
column modified to represent the geology within the study area (Sonnenberg, 2007; RCP,
2017).

Figure 1.8: Paleo-geographic map of the Late Cretaceous illustrating the WIS from the
present day Artic Ocean to the Gulf of Mexico (Blakey, 2014).
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Figure 1.9: Map of the deposition of the Late Creteceous Niobrara showing warmer gulf
currents from the South and cooler Arctic currents from the North (Locklair and Sageman,
2008; Hettinger and Kirschbaum, 2002).

Figure 1.10: Top Niobrara fault map over the Wishbone section. The graben in the middle
of the section is refered to as the central graben.
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central graben.

The World Stress Map from 2008 suggests that within the Wattenberg field the modern

day stress direction is around N20◦W (Grechishnikova, 2017). Specifically within the RCP

study area, Dudley (2015) conducted a local maximum stress analysis (Figure 1.11). Dudley

analyzed fracture image (FMI) logs from three different horizontal wells within the Wishbone

section and determined that the local average maximum horizontal stress direction is N68◦W.

The fractures within the Codell Sandstone were oriented N65◦W and within the two Niobrara

wells Dudley (2015) identified the dominant fracture orientations: 1) N60◦W and N90◦W

within one well and 2) N50◦E and N80◦W in the other. Within the Niobrara wells there

was no visual difference in fracture intensity between the chalk and marl benches, although

it was determined that the Niobrara had a lower fracture count than the Codell Sandstone

(Dudley, 2015).

Figure 1.11: Maximum horizontal stress directions average at N68◦W - derived from FMI
log interpretations from three horizontal wells (one targeting the Codell formation and two
targeting the Niobraray C chalk interval). The wells strike NS. (modified from Dudley, 2015).

1.4 Background Information

This section details the basics needed to understand the work presented in this thesis.

These topics include acquisition of 9-C data, the purpose and generation of COCA gathers,
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and the process of developing the Wattenberg synthetic model.

Acquisition of 9-C multicomponent data utilizes both vertical and horizontal sources

and 3-C receivers (two horizontal components and one vertical). P-wave data acquisition

utilizes a vertical source that generates particle motion parallel to the direction of wave

propagation. For pure P-wave data, the particle motion is observed on the vertical and

horizontal receiver components. The distribution of P-waves on the vertical and horizontal

receivers is dependent upon the angle of emergence at the receiver. The P-wave dataset used

for processing and analysis is taken from the vertical receiver component only. I make use

of the fact that P-waves are recorded on the horizontal receivers for the horizontal-receiver

azimuth orientation in Chapters 2 and 3.

Converted-wave (PS or C-wave) data are generated with a vertical source and the particle

motion is observed on the horizontal components. C-waves recorded on the vertical receiver,

again due to a non-vertical emergent angle, are neglected. C-wave reflections are generated

by an incident (down traveling) P-wave reflecting as an SV-wave and observed on the ra-

dial component (R) as the radial direction is inline with the source-receiver azimuth. The

transverse component T is oriented orthogonal to R, and is used as a diagnostic indicator

of shear-wave splitting when non-zero.

Two orthogonal, horizontal sources generate particle motion perpendicular to the direc-

tion of wave propagation during S-wave data acquisition. Data acquired in field coordi-

nates are rotated to radial-transverse coordinates for processing and analysis. The radial-

source radial-receiver component is denoted as RR and is a proxy for SV-waves, while the

transverse-source transverse-receiver TT is a proxy for SH-waves (Omar, 2018). Cross-terms

RT (radial-source transverse-receiver) and TR (transverse-source radial-receiver) are indi-

cators of shear-wave splitting when non-zero. Note that ideally RT = TR in the presence

of split shear-waves.

In a purely isotropic world, energy will only be observed on the principle components R,

RR and TT. Conversely, energy observed on the crossterm components T, RT and TR is
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indicative of shear-wave splitting and anisotropy.

COCA gathers allow for azimuthal information preservation and the visualization of

anisotropy (Gray, 2007). COCA gathers are built by binning prestack data primarily by

CMP super gather location (with a large binning radius) with offset as the secondary sorting

key. Different from the common-offset stack, the tertiary sorting key is azimuth (Figure

1.12).

Figure 1.12: The basemap at the right shows a number of COCA super gather locations
(blue). The backdrop shows the faults on the top Niobrara level. COCA gathers are formed
by sorting the data within each binning radius by offset plane (secondary) and azimuth bin
(tertiary).

Created by Todd, 2018, the Wattenberg synthetic model included input from all 10

vertical wells within the Turkey Shoot survey. Density and sonic logs were used to derive P-

impedance. The derived P-impedance and seismically derived horizons were used to populate

the model (the interpolation method was a weighted average), Figure Payson 1.13 is the

result. To convert the model to time a velocity model was built. Once the model is populated

in time it was converted into reflection coefficients and convolved with a zero-phase 30hz

Ricker wavelet.
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Figure 1.13: Wattenberg Synethic Model - cross section through the Turkey Shoot survey.
Star represent well locations, the black line is the cross section. The red box indicates where
the Wishbone section is located (Todd, 2018)
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CHAPTER 2

SHEAR-WAVE REFLECTION-SIGNAL LEAKAGE IDENTIFICATION

2.1 Summary

Shear-wave (S-wave) and Converted-wave (C-wave) COCA gathers are used to expose,

and interpret, anomalous reflection signal on the Monitor 1 data. Reflections on the cross-

components, typically used as a diagnostic of shear-wave splitting when reflection energy

exists, are seen in the overburden above the Niobrara interval where the hydraulic fractur-

ing occurred. S-wave COCA gathers show apparent S-wave reflections that are unrealistic,

and unrelated to anisotropy. C-wave COCA gathers pinpoint the cross-component leakage

as a global error in the nominal azimuth of the horizontal receiver H1 during data acqui-

sition (φH1 ≈ 10◦, rather than φH1 = 0◦ as assumed in the rotation to radial-transverse

coordinates).

Synthetic S-wave and C-wave COCA gathers qualitatively model the cross-component

leakage caused by φH1 = 10◦, which confirms the hypothesis derived from the interpretation

of Monitor 1 COCA gathers. Evidence that the leakage is caused by a global error in the

nominal azimuth orientation of H1 became obvious only from examination of the C-wave

transverse T component. C-waves only require a receiver rotation, thus, a global error in

the nominal H1 orientation will not cancel in the COCA gathers, and the leakage will exist

throughout the dataset.

The global H1 azimuthal error during data acquisition is likely due to confusion between

true north, φH1 = 0◦, and magnetic north φH1 = 8◦ (or φH1 = N8◦E).

2.2 Basics

Simple synthetic examples illustrate the principles of particle motion involved in the

P-wave first-arrival, and C-wave reflection methods for estimating the H1 azimuthal field

orientation. A basemap of nine shotpoints (blue) and one receiver (green) is shown in Figure
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2.1a. Shots are located at the same relative offset from the receiver and are separated by

20◦ azimuth increments from Shotpoint A to Shotpoint B. Horizontal receivers are oriented

North (N) and East (E) as shown in green.

Seismograms recorded on the N and E receivers from each shotpoint are shown in Figure

2.1b. Simple convolutional modeling generates the seismograms, and the source-receiver

azimuth determines the distribution of energy onto the horizontal receiver components. The

polarity convention for particle motion is positive to the North and East. For example,

shotpoint A located due North of the receiver generates a P-wave traveling South, thus, the

polarity is negative (red trough). Shotpoint B, which is almost due South of the receiver,

produces particle motion on the N component to the North, thus, the waveform is positive

polarity.

These concepts are applicable to both the P-wave first arrival and C-wave reflection meth-

ods for horizontal-receiver orientation. For the first-arrival and C-wave reflection methods,

the data are presumed to be direct P-wave arrivals and C-wave (P-SV) reflections, respec-

tively. Both types of events are assumed to have particle motion in the sagittal plane (the

vertical-radial plane between source and receiver) as shown in Figure 2.1b.

The data in Figure 2.1b are not easily interpretable due to the azimuth-dependent signal

distribution onto the N = H1 and E = H2 receivers. Rotating the horizontal receivers H1

and H2 into radial-transverse coordinates (R=Radial,T=Transverse) is essential for multi-

component processing and interpretation as the azimuthal dependence of the source-receiver

orientation is removed (Gaiser, 1999). Azimuthal rotation to R − T coordinates (φR
ROT )

requires knowledge of the source-receiver azimuth (φSR) and the azimuth of the H1 receiver

(φH1) (H2 is orthogonal). φSR is calculated from the source and receiver locations. Generally,

an attempt is made to orient φH1 parallel to the receiver-line layout prior to data acquisition.

Three simple examples of the R-T rotation are shown in Figure 2.2 using Equations 2.1

and 2.2. The source is depicted as the black circle, the red and blue arrows are H1 and H2,

respectively. The green and purple arrows indicate φSR for receivers 2 and 3, respectively.
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Rotation from H1 - H2 coordinates to R-T coordinates is given mathematically as[
R

T

]
=

[
cos(φR

ROT ) sin(φR
ROT )

− sin(φR
ROT ) cos(φR

ROT )

] [
H1

H2

]
(2.1)

where

φR
ROT = φSR - φH1.

(2.2)

where φSR is the source-receiver azimuth, and φH1 is the azimuth of the H1 receiver (φH1 = 0◦

for this example).

S-wave data consist of the horizontal receivers H1 and H2 recorded from each of the two

horizontal vibrators (S1 and S2) as S1H1, S1H2, S2H1, and S2H2. These data are rotated to

radial-transverse coordinates (Simmons and Backus, 2001b) as

[
RR RT

TR TT

]
=

[
cos(φR

ROT ) sin(φR
ROT )

− sin(φR
ROT ) cos(φR

ROT )

][
S1H1 S1H2

S2H1 S2H2

] [
cos(φS

ROT ) − sin(φS
ROT )

sin(φS
ROT ) cos(φS

ROT )

]
(2.3)

with

φS
ROT = φSR − φS1. (2.4)

The S-wave data in radial-transverse coordinates are RR. RT, TR, and TT where RR is

defined as radial source - radial receiver, RT as radial source - transverse receiver, etc. Note

that the azimuth orientation of source S1 (φS1) is required, and it is assumed that S2 ⊥ S1.

Shear-waves in radial-transverse coordinates are examined later.

Now I consider the C-wave problem of Figure 2.2. Every H1 receiver is oriented North,

thus, φH1 = 0◦ for all receivers. The parameter that varies for each receiver is φSR, as the

source-receiver azimuth changes per location. For receiver 1, φSR = 0◦ and from Equation

2.2, φR
ROT = 0◦. Moving clockwise, φSR = 45◦ for receiver 2. In this case, as Equation 2.2

shows, φR
ROT = 45◦ − 0◦. For receiver 3, φSR = 90◦, and consequently φR

ROT = 90◦.

17



Figure 2.1: Illustration of P-wave (and/or C-wave) particle motion as recorded on horizontal
receivers as a function of source-receiver azimuth. a) Basemap with horizontal receivers
oriented North and East at the center of the map in green. Shotpoints are shown in blue,
and are spaced at 20◦ azimuth increments from shotpoint A to shotpoint B. b) Data recorded
on the North (N) and East (E) oriented receivers for each shotpoint. The inherent assumption
is that the wave arriving at the receiver from each shotpoint propagates in the sagittal plane
(vertical plane containing source and receiver).

Figure 2.2: Schematic illustration of the rotation of the horizontal-receiver components from
a) North (N) and East (E) to b) Radial (R) and Transverse (T). This figure depicts a basemap
in plan view of a shotpoint (black circle) and three receivers (1, 2, and 3). Radial-Transverse
rotation needs the source-receiver azimuth as determined from the (x,y) locations, and the
field azimuth of the North receiver (the East receiver is orthogonal). The radial component
(red arrow in b) is oriented away from the shot along the source-receiver azimuth, with the
transverse component perpendicular in the clockwise direction.
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Data recorded from the shotpoints in Figure 2.1a are shown again in Figure 2.3 with the

radial-transverse data below (Figure 2.3b). These data are rotated using Equation 2.1 with

φH1 = 0◦, and the appropriate φSR for each shotpoint. All data are now contained on R for

all shotpoints (azimuths), with T=0.

Figure 2.3: Rotation of the data in Figure 2.1b from North and East to Radial and Transverse
(R, T). a) Data recorded on the North (N) and East (E) horizontal receivers (as in Figure
2.1b). b) Rotated to Radial R and Transverse T coordinates.

The radial-transverse rotation uses the correct azimuth of the North receiver, φH1 = 0◦.

In 3-D multicomponent data acquisition, field crews generally try to orient H1 along the re-

ceiver lines. H2 is then orthogonal by nature of the 3-C geophone design. The source-receiver

azimuth, φSR is determined from the source and receiver (x,y) locations. Multicomponent

acquisition is imperfect, however, particularly with regard to the assumption of a constant

and consistent H1 orientation. Variance of the H1 azimuth, which can potentially vary at

each receiver location, must be identified and corrected during processing. An incorrect

assumption of φH1 can lead to improper radial-transverse rotations. Residual energy will

remain on T, with R consequently having incorrect amplitudes. Note that reflection energy

on the transverse component T 6= 0 is generally a diagnostic indicator of shear-wave splitting

for C-wave data.
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2.3 Improper Rotation to R-T Coordinates: Simple Synthetic Example

The simple synthetic data produced with misoriented horizontal receivers are shown in

Figure 2.4. Here φH1 = 20◦ (with φH2 = 110◦), as shown in green on the basemap in Figure

2.4a. The data are shown below in Figure 2.4b. Note that the shot located at an azimuth

of φSR = 20◦ (clockwise from North), now contains all energy on N ′ (with E ′ = 0). For

this source-receiver azimuth N ′ is actually the radial component R since from Equation 2.2,

φR
ROT = 0◦ (and E ′ is the transverse component T).

Results of the radial-transverse rotation assuming φH1 = 0◦, rather then the correct value

of φH1 = 20◦, are shown in Figure 2.5. Residual energy remains on T’, and consequently,

the amplitudes of R’ are in error.

Data recorded with the misoriented receivers and rotated to radial-transverse coordinates

using φH1 = 20◦ are shown in Figure 2.6. The data are now properly rotated onto the true

R and T components.

Figure 2.4: Misorientation of the North (N) and East (E) receiver components by 20◦. a)
The North and East receivers are rotated by 20◦ to the East (green), with the same shotpoint
locations as in Figure 2.1a. The mis-oriented N and E components are now denoted as N’
and E’, respectively. b) Data recorded on the N’ and E’ components. Note now that the
shotpoint located 20◦ East of North has all data contained on the N’ component, whereas
E’ = 0. This shotpoint is radial to N’, while E’ is transverse.

20



Figure 2.5: Radial-Transverse rotation of the data with the North receiver misoriented by
20◦ to the East. a) Data recorded on the N’ and E’ components from the geometry of Figure
2.4a. b) Data in radial-transverse coordinates. The N’ and E’ components have been rotated
to R’ and T’ assuming that the North receiver is actually oriented North (φH1 = 0◦). Note
the energy on T’, and as a result, the energy on R’ is less than it should be.

2.4 Field Data: Anomalous Crossterm Energy

C-wave and S-wave data from the Baseline and Monitor 2 surveys were judged to show

no evidence of shear-wave splitting during commercial data processing. Monitor 1 S-wave

common-shot stacks (Figure 2.7) do show apparent reflection signal on the crossterms RT

and TR. Note that these S-wave crossterms are the equivalent indicator of shear-wave split-

ting as is the C-wave T component (Omar, 2018).

The Niobrara interval is at 3500 ms, within which the hydraulic fracturing occurred.

The reflection signal in the overburden is anomalous and cannot be explained in terms

of anisotropy. This anomalous signal was described as leakage, somehow attributed to wet

surface conditions present during data acquisition, with no additional explanation or analysis

provided.

Consequently, only the C-wave radial component R, and the S-wave RR and TT com-

ponents from all three surveys were prestack time migrated. The C-wave T component, and

21



Figure 2.6: Correct radial-transverse rotation assuming that the azimuth of N ′ = 20◦. a)
Input data in N’, E’ coordinates. b) Output data in radial-transverse coordinates. All energy
is rotated onto R given that the correct φH1 is used in the rotation.

the S-wave RT and TR components were dropped after preprocessing.

In order to examine the anomalous Monitor 1 signal (Figure 2.7), I use the preprocessed

unmigrated data for the following COCA gather analysis since all C-wave and S-wave data

components are available.

COCA gathers for a super bin from the Baseline and Monitor 1 surveys are shown in

Figure 2.8. Isotropic 1-D traveltime moveout corrections have been applied to the prepro-

cessed gathers, along with a bandpass filter. Each of the components were then super binned

(bins of 2500 ft by 2500 ft), stacked within 500-ft offset planes and 20◦ azimuth sectors, to

produce the COCA gathers.

Three reflections (A,B,C) are indicated along the time (vertical) axis. Reflections A and

B are in the overburden, while reflection C is at the depth where the hydraulic fracturing

occurred. Gathers from the Baseline survey (Figure 2.8a) show minimal energy on the

crossterms RT, TR, and T, and the clear separation of SV-waves onto RR, and SH-waves

onto TT, as expected. Monitor 1 gathers (Figure 2.8b) show the leakage. Reflections A, B,

and C appear on RT, TR, and T as scaled versions of RR, TT, and R, respectively. Note
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Figure 2.7: Monitor 1 S-wave common-shot stacks from the data-processing report showing
undesirable energy on RT and TR throughout the section.

that RT is reversed polarity relative to RR (most obvious for Reflection C).

S-wave and C-wave data from Monitor 1 are unusable in this form as reported by the data

processing contractor. This characteristic is observed on the COCA gathers throughout the

entire survey. S-wave data (RR, RT, TR, TT) involve a source-side rotation which assumes

orthogonality between S1 and S2, and known azimuthal orientations of S1 (φS1) and H1 (φH1)

as seen in Equation 2.3. Small random errors in these orientations tend to cancel in the large

spatial bin COCA gathers, but the crossterm energy has not canceled out. The energy is

coherent and not characteristic of HTI media. This analysis of the S-wave data indicates

that signal leakage is a source and/or receiver orientation issue not accounted for during

processing.

C-wave COCA gathers also show the crossterm leakage as seen on the T component in

Figure 2.8. Only a receiver-side rotation is required for C-wave data which indicates that an

error in the H1 azimuth orientation is the first-order cause of the signal leakage on the T,

RT, and TR components.
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Figure 2.8: COCA gathers, real data. The nominal φH1 = 0◦ is used for the radial-transverse
rotation. a) Baseline survey. b) Monitor 1 survey. The C-wave gathers (right) have been
approximately registered with the S-wave gathers. Note the leakage of reflections onto RT,
TR, and T in b), even for reflections A and B which are considerably shallower than the
hydraulically fractured interval C.
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2.5 COCA Gathers: Prestack Synthetic Seismograms

The cross-component leakage was modeled using 9-C synthetic prestack data generated

by anisotropic reflectivity modeling (Fryer and Frazer, 1984; Fryer and Frazer, 1987; Ken-

nett, 1983). Any, or all, layers may be generally anisotropic with the restriction that the

layers be flat and homogeneous. Vertical and orthogonal horizontal forces are located at the

center of a square (x, y) grid, with 3-C receivers uniformly spaced in x and y. Plane waves

are propagated through the layered medium as a function of frequency ω, and horizontal

wavenumbers kx and ky, the reflectivity response is calculated, R(ω, kx, ky), and then a 3-D

inverse Fourier Transform produces the 9-C prestack data cubes in the time-space domain

(t, x, y).

The square acquisition grid, with the sources at the center, provides data at all azimuths

and offsets. Horizontal receivers H1 and H2 are oriented north and east (φH1 = 0◦, φH2 =

90◦), as are the horizontal-force sources S1 and S2 (φS1 = 0◦ and φS2 = 90◦, respectively).

The earth model consists of an isotropic overburden (five layers), with an anisotropic (HTI)

target interval (four layers). Prestack data are rotated into radial-transverse coordinates

assuming φH1 = 0◦, and φS1 = 0◦ for the shear-wave source components.

Spherical divergence and traveltime moveout corrections are applied, then the data are

stacked into COCA gathers (Figure 2.9a). Reflections from within the isotropic overburden

are indicated as A and B, with the HTI target interval identified as C. SV reflections are

contained on RR, SH reflections on TT, with the cross terms (RT and TR) containing the

split shear waves. P-SV reflections are contained on R, with T containing the split shear

waves. Omar (2018) provides examples of P-wave, C-wave, and S-wave COCA gathers for

several different anisotropic models.

I model a global error in the H1 azimuth occurring during data acquisition by rotating H1

and H2 for each source to φH1 = 10◦ (φH2 = 100◦), and then rotating the C-wave and S-wave

data to radial-transverse coordinates. I assume φH1 = 0◦ in the rotation to radial-transverse

coordinates, using the correct value of φS1 = 0◦ for the S-wave source rotation.
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Figure 2.9: COCA gathers, synthetic data. a) Rotated with the correct φH1 = 0◦. b) The
actual φH1 = 10◦, but the radial-transverse rotation assumes φH1 = 0◦. Note the cross-
component leakage on RT, TR, and T. Consequently, the amplitudes on RR, TT and R
are in error.
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The corresponding COCA gathers are shown in Figure 2.9b. This procedure mimics my

interpretation of the Monitor 1 data. An unrecognized global error of φH1 = 10◦ causes

isotropic reflection energy (reflections A and B) to appear on the crossterms (RT, TR, and

T). Note that RT is a scaled version of RR, TR is a scaled version of TT, and T is a

scaled version of R. Also note that RT is reversed polarity relative to RR. These data are

not interpretable with regard to shear-wave splitting and/or AVAZ (Cary, 2002; MacBeth

et al., 1994).

2.6 Discussion

Rotation of horizontal receivers H1 and H2 to radial-transverse coordinates is critically

important for C-wave and S-wave data processing and analysis. Geophone layout prior to

data acquisition attempts to align the H1 azimuth, φH1 to a fixed direction, generally this

nominal direction is parallel to the receiver lines (φH1 = 0◦ for Wattenberg). COCA gathers

of the Monitor 1 C-wave and S-wave data, suggest a general error in the nominal H1 azimuth,

as φH1 6= 0◦.

Initial analysis focussed on the S-wave COCA gathers. The cross-component leakage

became clearly apparent looking at these prestack gathers including the overburden data.

S-wave rotation to radial-transverse coordinates involves φSR, φH1, and the field orientation

of φS1 (assuming that the field orientation of φS2 ⊥ φS1). At this stage, however, the source

of the leakage was uncertain; receiver side due to a mis-orientation of H1, source-side due to

the mis-orientation of S1, or some combination thereof.

Analysis of the C-wave COCA gathers confirmed a receiver-side issue with the field

orientation of H1. No source rotation is involved for C-waves recorded from a vertical

vibrator. Visual inspection of COCA gathers from the Baseline, Monitor 1, and Monitor

2 surveys suggested that the Monitor 1 data were most affected. It is important to note,

however, that the magnitude of shear-wave splitting within the Niobrara interval is expected

to be very small (Omar, 2018). Consequently, the crossterms (C-wave T component, and the

S-wave RT and TR components) will be weak in amplitude. As a result, estimation of the
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true H1 azimuth orientations is extremely important since the crossterm energy is diagnostic

of shear-wave splitting, and preservation of the correct crossterm energy is needed for C-wave

(Simmons, 2009), and S-wave (Alford, 1986) splitting inversions.

The simple synthetic example shows that a mis-orientation of φH1 = 20◦, produces an

amplitude error in R’ when the data are rotated to radial-transverse coordinates assum-

ing φH1 = 0◦. This is relevant to the Wattenberg data processing. C-wave and S-wave

preprocessing generally derives processing parameters from the R, RR, and TT compo-

nents (surface-consistent amplitudes, surface-consistent deconvolution filters, reflection stat-

ics, etc.) and then applies these parameters to respective crossterm components. Errors in

the φH1 values used for radial-transverse rotation, may compromise the quality of products

created during the seismic processing flow.

The cross-component leakage on the Monitor 1 survey was initially identified on S-wave

COCA gathers. Reflection signal leakage on S-wave data could be attributed to receiver

mis-orientations, and/or shear-source non-orthogonality and/or receiver mis-orientations.

Leakage on the C-wave COCA gathers indicated that there was a receiver side (H1) acquisi-

tion issue. Utilizing both the S-wave and C-wave data were crucial in determining the cause

of the cross-component leakage. The receiver mis-orientation hypothesis was qualitatively

confirmed through synthetic prestack modeling. The following chapter details two methods

that estimate H1 azimuth orientations, compares the methods, exposes a global rotation er-

ror of the Monitor 1 data, and provides local receiver φH1 estimates for the Baseline, Monitor

1 and Monitor 2 surveys.

28



CHAPTER 3

HORIZONTAL-RECEIVER AZIMUTH ESTIMATION

Accepted for publication at the 2018 EAGE Conference Copenhagen, Denmark

3.1 Summary

This chapter details two approaches to estimate the azimuth orientation of H1 for each

C-wave receiver gather to optimally rotate the horizontal receivers from field coordinates

into radial-transverse coordinates. Concepts are illustrated on the simple synthetic example

of Chapter 2, then applied to the Turkey Shoot data.

The first approach uses P-wave first-arrival energy to drive the algorithm and is often

employed on land and marine multicomponent data. The second approach uses C-wave

reflections on Limited-Azimuth-Stacks (LAS). Input data are common-receiver gathers of

the horizontal-receiver components, H1 and H2, as acquired in the field. Both approaches

search for the optimal H1 azimuth for each receiver (φest
H1), which when used to rotate the

data to radial-transverse coordinates, minimizes the energy on the transverse component,

and maximizes the energy on the radial component.

I find that the P-wave first-arrival method recognizes a global error in the Monitor 1 H1

azimuth orientation of ≈ 8◦ as summarized in histograms of the φest
H1 values. Baseline and

Monitor 2 histograms are centered around φest
H1 ≈ 0◦. Spot checking some of the Monitor 1

histogram outliers suggested that these values may be in error. Some authors have noted

with problems with this approach, particularly for onshore data which tends to have a lower

signal-to-noise ratio than Ocean-Bottom-Cable or Ocean-Bottom-Node data.

The C-wave reflection approach finds the optimal H1 azimuth that minimizes transverse

reflection energy in the overburden. It is interesting the two approaches give very simi-
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lar looking φest
H1 histograms, with the spread being considerably tighter with the reflection

method. The φest
H1 estimates from this approach are then used to correct the preprocessed

C-wave and S-wave data for further analysis.

3.2 Introduction

Various approaches to estimating the horizontal-geophone azimuth orientation (φH1) have

been proposed. Hodograms are often used for Vertical-Seismic-Profile (VSP) data (DiSiena

et al., 1984) due to the relatively small number of receivers since this is an interactive,

graphical approach. Generally, the analysis window is guided by the P-wave first arrival at

each receiver level. The horizontal receivers at each depth level have an unknown azimuth

orientation, and as a result, the direct P-wave arrival is recorded on both the H1 and H2

receivers. A hodogram is simply the crossplot of the seismic trace amplitudes within a

specified time window encompassing the P-wave first arrival.

Hodograms for the simple synthetic data of Figure 2.1 are shown in Figure 3.1. One looks

for linearity in these crossplots, whereby one then infers the azimuth of one of the horizontal

receivers. For example, for shotpoint A all energy is on the North (N) component. If the

shotpoint A hodogram instead looked like the top row, right, knowing the source-receiver

azimuth (from shotpoint A to the receiver) one could estimate the misalignment of the North

receiver. Crossplots of the East (horizontal) and North (vertical) show linear trends for each

shotpoint from which the φH1 is inferred from the slope of a line fit to the crossplot. In this

case, the azimuths of the linear trends are the source-receiver azimuths.

Another common, more automated approach is to form the covariance matrix (Kanasewich,

1981; Zeng and McMechan, 2006) of the H1 and H2 amplitudes of common-receiver gathers

as

cov(H1, H2) =


∑

offset

∑
time

H2
1

∑
offset

∑
time

H1H2∑
offset

∑
time

H2H1

∑
offset

∑
time

H2
2

 (3.1)
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Figure 3.1: Hodograms of the data recorded on the North (N) and East (E) horizontal
receivers (Figure 2.1a). Each row shows the shots moving clockwise from shotpoint A to
shotpoint B. A hodogram is simply the crossplot of the seismic trace amplitudes (East is
along the horizontal axis, North is along the vertical axis).
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Figure 3.2: Hodograms of the data recorded on the North (N’) and East (E’) horizontal
receivers when the North receiver is oriented at H1 = 20◦. Now the azimuth inferred by
linear trend (slope) of the crossplots does not equal the source-receiver azimuth. The data
are those of Figure 2.4.
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where the summations are taken over the time window and the spatial (offset) window of

the analysis. The covariance matrix is then directly solved, and the φH1 orientation angle is

determined from the eigenvalues and eigenvectors . This direct solution can be susceptible

to noise in the data, limited shotpoint azimuthal coverage, and the polarity is ambiguous.

In addition, there is no quality control mechanism readily available with this method.

Both the P-wave first-arrival and C-wave reflection methods utilize a scanning procedure

(Nagarajappa et al., 2013) that operates on H1 and H2 common-receiver gathers to estimate

the optimal φH1 for each gather as[
R′

T ′

]
=

[
cos(φSR − φtrial

H1 ) sin(φSR − φtrial
H1 )

− sin(φSR − φtrial
H1 ) cos(φSR − φtrial

H1 )

] [
H1

H2

]
(3.2)

where φSR is the source-receiver azimuth, and φtrial
H1 is a trial value of the H1 azimuth. Each

trace of the H1 and H2 receiver gathers is rotated by φSR−φtrial
H1 producing R′ and T ′ receiver

gathers. For each φtrial
H1 , the RMS amplitudes of T ′

R′ are calculated within the analysis window,

and the minimum value yields the optimal φH1. The objective function is, thus, T ′

R′ (φ
trial
H1 )

and is displayed in decibels relative to T ′

R′ (φ
nom
H1 ), where φnom

H1 is the nominal φH1 generally

oriented parallel to the receiver lines (φnom
H1 = 0◦ for the Wattenberg field data).

Objective functions are used in all inversion problems. In many problems, the objective

function involves the data misfit (difference between the observed and predicted data) and

a model regularization term. Generally, the objective function is monitored and iterations

of the inversion cease when the objective function is no longer decreasing. In the following

examples, I display the objective function values for the entire range of φtrial
H1 for illustrative,

and potentially, interpretive purposes.

The φtrial
H1 scanning algorithm is applied to the simple synthetic data, and the results

are shown in Figures 3.3 - 3.4. Input data are that of Figure 2.4b, but now displayed as

receiver gathers (A and B indicate the traces recorded from shotpoints A and B, respectively

of Figure 2.4a). Each panel of Figure 3.3 shows the output of Equation 3.2 using the φtrial
H1

value indicated by the azimuth icon. The energy of T ′ decreases from upper left to lower left
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(moving left to right across each row) as φtrial
H1 approaches the correct value of φest

H1 = 20◦.

The objective function is shown in Figure 3.4 as the RMS ratio T ′

R′ (top), and in decibels

relative to the ratio at φnom
H1 (bottom). A virtue of displaying the objective function in decibels

relative to the value at φnom
H1 is that objective functions can be more easily compared.

Figure 3.3: Example of the H1 azimuth-scan algorithm applied to the simple synthetic
data of Figure 2.4b. Each panel shows the radial and transverse components (R’, T’),
ordered as gathers, obtained using a φtrial

H1 in the radial-transverse rotation of Equation
3.2. The icons at the bottom center of each panel indicate the φtrial

H1 trial values. φtrial
H1 =

−40◦,−30◦,−20◦ . . . 40◦ from the upper left to lower right.

3.3 H1 Azimuth Orientation Estimation: Field Data, P-wave First Arrivals

An optimal φest
H1 for each C-wave receiver gather is obtained using the scanning procedure

outlined in Equation 3.2, and illustrated in Figures 3.3 - 3.4. Field data H1 and H2 receiver

gathers, are minimally processed on input to the scan algorithm. Gain as t1.8 is applied,
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Figure 3.4: Objective function for the H1 trial azimuth-scan inversion shown in Figure 3.3.
a) Ratio of T’/R’ RMS amplitude values as a function of φtrial

H1 . b) Ratio of T’/R’ RMS values
divided by the ratio obtained for the φnom

H1 = 0◦ trial (the presumed nominal H1 azimuth).
Results are displayed in decibels. The minimum of the objective function gives the optimal
φest
H1 = 20◦.
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where t is two-way traveltime, the data are time aligned using P-wave first arrival picks, and

then noise bursts are attenuated using a time-frequency domain median filter.

Trace amplitudes within an 80 ms time window following the time-aligned P-wave first

arrivals are considered in the analysis for the objective function calculation. Data input to

the objective function are also offset limited to include only shotpoints having offsets from

1500 ≤ x ≤ 5000 ft, where x is the source-receiver offset. The trial azimuths φtrial
H1

range

from −90◦ . . . 90◦, Equation 3.2 is applied, and the RMS values of T ′ and R′ are calculated

for each φtrial
H1

.

Baseline and Monitor 1 time-aligned receiver-gathers from various receivers across the

survey are shown in Figures 3.5-3.11, and 3.12-3.18, respectively. The H1, and H2 input

gathers are at the left. Radial and transverse gathers obtained using φnom
H1 = 0◦ (Rnom,

Tnom), and the optimal φest
H1 from the scanning algorithm (Rest, Test), are shown in the

middle, and at the right, respectively. Energy on Test is generally reduced relative to that of

Tnom, although the amount of decrease is often very small.

The objective function is shown at the upper right of the Test panel. A virtue of the

scan method is that it produces an objective function that can be further examined, for the

depth of the minimum in particular. As discussed in Figure 3.4 , the objective function is

displayed in decibels relative to the value for φnom
H1 = 0◦ , which is the nominal H1 azimuth

during acquisition. The minimum of the objective function gives the φest
H1 that minimizes

energy on the transverse component after applying Equation 3.2.

The H1 azimuth scan is applied to all receiver gathers from the three surveys. Histograms

of the φH1 estimates for Baseline, Monitor 1 and Monitor 2 surveys are shown in Figure 3.19.

Histograms for Baseline and Monitor 2 have their mode near the nominal φH1 = 0◦ , while

the mode for Monitor 1 φH1 ≈ 8◦. This global skew of the Monitor 1 data causes the cross-

component leakage seen in the COCA gathers of Figure 2.8b, and in the synthetic COCA

gathers of Figure 2.9b.
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Figure 3.5: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data are
aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to radial-
transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse using
the estimated φest

H1 (Rest, Test).
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Figure 3.6: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data are
aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to radial-
transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse using
the estimated φest

H1 (Rest, Test).
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Figure 3.7: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data are
aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to radial-
transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse using
the estimated φest

H1 (Rest, Test).
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Figure 3.8: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data are
aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to radial-
transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse using
the estimated φest

H1 (Rest, Test).
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Figure 3.9: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data are
aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to radial-
transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse using
the estimated φest

H1 (Rest, Test).
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Figure 3.10: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.11: H1 azimuth estimation results. a) Baseline common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.12: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.13: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.14: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.15: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.16: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.17: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).
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Figure 3.18: H1 azimuth estimation results. a) Monitor 1 common-receiver gathers. Data
are aligned on the P-wave first arrival. H1, H2 as acquired in the field, after rotation to
radial-transverse assuming φnom

H1 = 0◦ (Rnom, Tnom), and after rotation to radial-transverse
using the estimated φest

H1 (Rest, Test).

Figure 3.19: Histograms of the φH1 estimates from the Baseline, Monitor 1, and Monitor
2 surveys. Baseline and Monitor 2 surveys have their mode near φH1 = 0◦, whereas the
Monitor 1 mode is shifted to φH1 ≈ 8◦.
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Many of the minima of the objective functions in Figures 3.5 - 3.18 are near the dB = 0

line, which means only a very slight reduction in energy on the transverse component. Others

show a considerable reduction in transverse energy. The shape of the objective function may

be meaningful, in particular, the difference between the maximum and minimum values (the

depth of the minimum). For example, in Figure 3.11 the objective function for the receiver in

the bottom row has a much smaller difference between the maximum and minimum values,

than do the other two gathers. Note that the vertical scale is restricted to ±10 dB, the

actual maximum value over the azimuth scan range may be larger than what is shown.

A conjecture is that the flatter objective functions, which have a relatively small differ-

ence between maximum and minimum values, may be more uncertain than those objective

functions that show more clearly defined minima, and may account for the scatter in the

φH1 estimates. Histograms of the objective function differences (maximum - minimum) are

shown in Figure 3.20 (left), along with the φest
H1 histograms (middle). The relative asymmetry

of the Monitor 1 objective function histogram is most noticeable (left, middle panel). The

right column in Figure 3.20 shows histograms of φest
H1 for the receiver gathers restricted to

those with a difference in the objective function ≤ 3 dB. In general, these flatter objective

functions account for some of the more anomalous φest
H1 values, but not all. A number of

these values exist at the modes of the φest
H1 histograms.

Visual inspection of C-wave reflection data (receiver gathers in the form of LAS) having

φest
H1 ≈ ±45◦ was made to qualitatively validate (or not) outliers from the histogram modes.

The LAS receiver gathers inspected after applying Equation 3.2 did not show reduced energy

on the output transverse component.

The first-arrival φest
H1 method is successful at finding the values of the histogram modes,

in general, but the outliers from the modes are suspect. Noise in the input data is a poten-

tial cause, as is potential ”out of the sagittal plane” P-wave polarization on the horizontal

receivers as pointed out by several authors (Burch et al., 2005).
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In the next section I apply the same scan algorithm as shown in Equation 3.2 to C-wave

reflection data, LAS of common-receiver gathers, to attempt to obtain more robust φest
H1

values.

Figure 3.20: Histograms resulting from the P-wave first-arrival method. At the left are
histograms of the objective functions maximum - minimum values in decibels. These sum-
marize the depth of the objective function minima. In the middle are histograms of the φest

H1

values. At the right are histograms of φest
H1 associated with objective function values below 3

dB. The aim is to see if the outliers of the φest
H1 histograms correlate with shallow objective

functions. They do to some extent, but values near the φest
H1 histogram modes also appear.

3.4 Horizontal-Geophone Azimuth Estimation: C-wave Reflection Data

The assumption of a simple earth model used in the P-wave first arrival method does

not always hold (Burch et al., 2005). Complexities in the near surface, and noise in the

data, complicate the P-wave first arrival amplitudes resulting in unreliable source-receiver

azimuths. A possibly more reliable method utilizes reflected C-wave reflections (Gaiser, 2003;

Nagarajappa et al., 2013).
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The C-wave (P-SV) reflection method also assumes propagation in the sagittal plane

(vertical plane between the source and the receiver). In general, C-wave reflections will

be recorded on the H1 and H2 receiver components, and the scan method can be directly

applied. To increase the signal to noise ratio and preserve azimuth information, receiver

gather LAS are used. The input data has been fully preprocessed by the data-processing

contractor.

Similar to the P-wave first-arrival method, this approach maximizes the C-wave reflection

energy on the radial component and minimizes the energy on the transverse component. An

optimal φest
H1 is estimated for each C-wave receiver LAS using the scanning procedure of

Equation 3.2 where now C-wave reflections are used to drive the algorithm.

An example of the C-wave reflection-scan output for nine φtrial
H1 values is shown in Figure

3.21. Output R′ and T ′ LAS stacks (20◦ azimuth sectors) from Equation 3.2 are shown,

along with the φtrial
H1 which is indicated in the azimuth icon positioned above each R′, T ′ pair.

The time window for analysis is indicated by the black bar (0.9 - 2.2 s) and is restricted

to the overburden. Hydraulic fracturing occurred deeper within the Niobrara interval at ≈

2.6s.

For each φtrial
H1 , the RMS energy within the analysis window is measured for the R′, T ′

output of Equation 3.2. Detailed examples are shown in Figures 3.22 - 3.25. The objective

function is shown as the solid line produced by scanning over all φtrial
H1 , with the circle showing

the objective function value for LAS gathers below. Output transverse energy decreases, and

output radial energy increases, as the φtrial
H1 producing the minimum of the objective function

is reached Figure 3.24.

The C-wave reflection method is applied to all receiver gather LAS for Baseline, Monitor

1, and Monitor 2 surveys. Histograms of the φest
H1 values are shown in Figure 3.26, along with

the histograms from the P-wave first-arrival method. The reflection method results show

similar histogram modes as does the first-arrival method, with considerably less variance in

the φest
H1 values.
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Figure 3.21: C-wave reflection scan method. Radial R and Transverse T receiver-gather LAS
stacks are shown for a single receiver gather (20◦ azimuth sectors). The azimuth icon above
each LAS pair indicates the φtrial

H1
value used in Equation 3.2. The analysis time window is

indicated by the black bar, and is restricted to the overburden (the Niobrara is at 2.6 s).
The optimal φtrial

H1
minimizes energy on T.
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Figure 3.22: Detailed view of the C-wave reflection scanning method. a) The objective
function for all φtrial

H1 values (solid line), and the current trial value (blue circle). b) Output
LAS using the current trial value. Note the similarity of R and T when the trial value is far
from the objective function minimum.
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Figure 3.23: Detailed view of the C-wave reflection scanning method. a) The objective
function for all φtrial

H1 values (solid line), and the current trial value (blue circle). b) Output
LAS using the current trial value. As the trial value approaches the objective function
minimum, energy on T is reduced relative to R.
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Figure 3.24: Detailed view of the C-wave reflection scanning method. a) The objective
function for all φtrial

H1 values (solid line), and the current trial value (blue circle). b) Output
LAS using the current trial value. At the objective function minimum, there is no coherent
energy on T, and the energy on R is maximized.
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Figure 3.25: Detailed view of the C-wave reflection scanning method. a) The objective
function for all φtrial

H1 values (solid line), and the current trial value (blue circle). b) Output
LAS using the current trial value. Energy increases on T as φtrial

H1 moves away from the
objective function minimum.
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The C-wave reflection method is considerably more robust, in that the spread of the

histograms is less, than is the first-arrival method. It is interesting, however, that both

approaches give similar estimates of the histogram modes, and recognize the ”global skew”

of φH1 ≈ 8◦ for Monitor 1. This skew is most likely due to confusion between true North

versus magnetic North during geophone layout.

Results from the C-wave method are judged to be more reliable and are used to optimally

rotate the C-wave and S-wave data to radial-transverse coordinates for all three surveys.

Figure 3.26: φest
H1 comparison. a) P-wave first-arrival method. b) C-wave reflection-stack

method. The two approaches give very similar histogram modes, but the C-wave reflection-
stack method has reduced scatter about the modes.

3.5 Cross-Component Shear-Wave Leakage Compensation

Preprocessed data were provided as R, T, RR, RT, TR, and TT gathers. These data

were rotated back to field coordinates using φH1 = 0◦, and then rotated to radial-transverse

coordinates using the φest
H1 values from the reflection-stack method.
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The large and apparent global skew in the H1 azimuth from the Monitor 1 survey was

easily identified with the P-wave first arrival approach, but it is difficult to confidently utilize

the H1 estimates for local rotations on Baseline, Monitor 1, and Monitor 2. Although the

local variations in the P-wave first arrival histograms were not reliable, the modes indicate

the global H1 orientations. Histograms from the reflection-stack method have the same

modes as the P-wave first arrival method with more reliable local variations for H1 azimuth

estimates (Figure 3.26).

The reflection-stack φest
H1 values for each receiver are used to optimally rotate the Baseline,

Monitor 1, and Monitor 2 data into radial-transverse coordinates. COCA gather compar-

isons are shown in Figures 3.28 - 3.42.

Figure 3.27: Baseline COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.28: Baseline COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.29: Baseline COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.30: Baseline COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.31: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.32: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.33: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.34: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.35: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.36: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.37: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.38: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.39: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.40: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Figure 3.41: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.
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Figure 3.42: Monitor 1 COCA gathers. a) S-wave (RR, RT, TR, TT) and C-wave (R,
T) obtained using the nominal φnom

H1 = 0◦. b) COCA gathers obtained using the C-wave
reflection scan φest

H1 values.

Cross-component energy is reduced, in general, after using the φest
H1 values, particularly

for the Monitor 1 data. A verification in a different form is shown in Figure 3.43. These data

are a single azimuth-sectored stack (20◦−0◦,−10◦ central angle) of the C-wave T component

for all receiver gathers from Monitor 1. These are ordered arbitrarily from left to right within

a the panel. The left panel shows the data received from the processing contractor which

assumed φnom
H1 = 0◦. The panel at the right shows the data after using the φest

H1 values from

the C-wave reflection-stack method.

Note the coherent energy in the overburden (expected to be isotropic) at ≈ 2.0, and

the energy at the Niobrara level at ≈ 2.5 s on the left panel. These energy is considerably

reduced upon using the φest
H1 values in the radial-transverse rotation (right panel).

3.6 Discussion

The P-wave first arrival method identified, and corrected for, the global error of the

Monitor 1 H1 field-azimuth orientations. Cross-component leakage is removed, to first-order,

by this compensation. The key step was recognizing the characteristics of the leakage on
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Figure 3.43: Monitor 1, transverse component (T) common-receiver, azimuth-sector stack,
for the azimuth sector from 0◦−20◦. Each trace is a stack of the moveout-corrected 0◦−20◦

azimuth sector for each common-receiver gather (arbitrarily ordered). Left) Using φnom
H1 =

0◦ from the production processing. Right) Using the φest
H1 values from the reflection-stack

method. Note the energy on the left panel, and the reduction in energy when the radial-
transverse rotation is properly applied.
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prestack S-wave and C-wave COCA gathers, and then using prestack modeling to verify the

hypothesis that the leakage is caused by a global H1 azimuth mis-orientation.

Histograms for both methods display a spread of H1 orientations around the mode for

each survey (Figure 3.26). This histogram spread could be masking shear-wave splitting

signal, since the magnitude of the splitting is expected to be small (≈ 2-7 ms for S-wave

splitting, ≈ 1-3 ms for C-wave splitting, depending on the thickness of the fractured interval),

and vary laterally (Omar, 2018).

The histogram spread from the P-wave first arrival method was not reliable and could

not be used for local H1 rotations. The C-wave reflection-stack approach produced more

reliable estimates, and these φest
H1 values were used to correctly rotate the C-wave and S-wave

data into radial-transverse coordinates.

C-wave COCA gather analysis confirmed our hypothesis of a global H1 orientation er-

ror. Lacking C-wave data, it would have been difficult to determine whether the acquisition

orientation issue was receiver side, source side, shear-source non-orthogonality, or some com-

bination thereof. We recommend such analysis as a standard for multicomponent data

processing.

In addition, the P-wave first arrival method should be applied early in the processing

sequence to determine an initial φnom
H1 value for radial-transverse rotation. After data prepro-

cessing, the C-wave reflection-stack method could be applied to refine the radial-transverse

rotation to the data input to migration (Simmons and Backus, 2001b).
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CHAPTER 4

SPARSE-LAYER REFLECTIVITY INVERSION

4.1 Introduction

The ultimate goal in oil and gas is to optimize exploration and exploitation of the reser-

voir of interest and the use of seismic to reach this goal is extremely important. Seismic

exploration aids in the mapping of geological features associated with the petroleum sys-

tem and seismic exploitation bolsters the characterization of subsurface static and dynamic

reservoirs (Chopra and Marfurt, 2005). These specific parameters include, but are not lim-

ited to: horizon depth, reservoir thickness, faults, heterogeneity, porosity, permeability, and

thermodynamics. Although logging programs measure a handful of these parameters, they

are laterally sparse and incomplete. Seismically derived attributes provide estimates that are

sensitive to geology and reservoir properties that help to infer parameters of interest (Chopra

and Marfurt, 2005). Seismic inversion is considered a seismic attribute as it encompasses

seismically derived parameters.

Post stack seismic inversion attempts to extract relative changes in impedance from post

stack seismic data. Direct inversion methods estimate the impedance directly from the

data. The least-mean-squared-error approach of Turin (1957), recursive trace-integration

(Lindseth, 1979), and layer-stripping methods (Goupillaud, 1961; Robinson, 1978) are direct

inversion methods. These direct methods assume that the data are noise free, and that the

seismic wavelet is known exactly.

Another class of post stack inversion methods use an assumed forward-modeling operator

to iteratively adjust an initial impedance model until a good fit between the observed and

predicted data is achieved. These indirect methods require that the initial model be close

to the true model (Cooke and Schneider, 1983; Russell and Hampson, 1991), and iteratively

adjust/update the impedance model using a Generalized Linear Inversion (GLI) framework
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(Keys and Weglein, 1983). Within the GLI framework, the user selectively weights the

data misfit (Least-Mean-Squared-Error (LMSE) l2 norm), and the model reasonableness.

Model reasonableness is an arbitrary term, user (inverter) dependent, and is implemented

mathematically through use of the model-covariance matrix (Tarantola 2005). Generally,

the model covariance matrix limits adjustments to the current model at each iteration, but

can also be specified to incorporate relationships between model parameters.

The post stack GLI inversion of Hampson-Russell (STRATA) is often used within RCP.

Note that this inversion is heavily constrained. Horizons are required to guide the inversion,

and a layer time-thickness (block size) is specified a priori. The model weighting factor

weights the model reasonableness versus the data misfit (i.e. model covariance matrix in

some form), and is rather insensitive, due to the horizon and layer time-thickness constraints

(examples to be shown later).

Qualitative interpretation/inversion methods involve seismic attributes (Chopra and Mar-

furt, 2008), where the goal is to expose seismic anomalies. Typically, a variety of attributes

are generated, and the user determines which attributes are meaningful for her/his particular

prospect.

Spectral decomposition (Partyka et al., 1999) is a qualitative inversion that attempts

to infer geological bed thicknesses in the frequency domain, and has found success exposing

stream channels (Sinha et al., 2005), as well as differentiating hydrocarbons from brine (Chen

et al., 2001; Chen et al., 2008). The vertical traveltime separation of seismic reflections

produces a particular amplitude spectrum in the frequency domain. Spectral decomposition

uses Short-Time-Fourier-Transforms (STFT) to decompose the poststack seismic volume

into frequency bands which are related to bed thickness. Constant-frequency slides in plan

view can expose lateral changes in layer thickness.

An extension to the spectral decomposition approach involves a more elaborate inversion

that attempts to estimate bed thickness and reflectivity in the frequency (spectral) domain

(Puryear and Castagna, 2008; Portniaguine and Castagna, 2004, 2005; and Chopra et al.,
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2006; among others). This thin-bed reflectivity inversion uses STFT to spectrally decompose

the seismic trace. Time, and space-variant (if specified), wavelets are deconvolved from the

input data in a constrained fashion. Thin-bed thickness and the reflection coefficients at the

top and base of the thin layer are estimated. The objective function includes the data misfit

and a model-based term that controls the sparsity of the estimated reflection coefficients

(Portniaguine and Castagna, 2004; Puryear and Castagna, 2008).

Thin-layer reflectivity-like inversion methods have also been cast in the time domain. The

first application is that of Simmons and Backus (1994), and Simmons and Backus (1996).

Post stack data are inverted (modeled) as a sparse set of thin-layer basis functions. In their

offshore case-history, sparsity exposed that the assumption of a white reflectivity spectrum in

the wavelet estimation process was incorrect. Consequently, their wavelet was modified for a

blue reflectivity spectrum, which significantly reduced the data misfit of a known thin-layer

reflection, and produced more accurate estimates of the thin-layer thickness.

Time-domain sparse-layer inversion has more recently been cast into a basis pursuit in-

version by (Zhang and Castagna, 2011). This work is a rediscovery of the Simmons and

Backus (1996) approach. The basis functions are now referred to as the basis pursuit dictio-

nary (Chen et al., 2001), and the inversion is solved more elaborately than that of Simmons

and Backus (1996).

I had hoped to evaluate the time-domain sparse-layer basis pursuit approach of Zhang

and Castagna (2011) using Lumina Geophysical’s UltraTM software package. Contractual

arrangements could not be made in time so I moved forward with the thin-bed reflectivity

code of Puryear and Castagna (2008), and Portniaguine and Castagna (2004, 2005).

The thin-bed reflectivity code is ThinMan, a commercial code provided by SigmaCubed.

Seismic traveltime horizons are not needed, nor is a presumed layer time-thickness. My

objective is to evaluate this approach for exposing lateral variations in thin-bed reflectivity

and/or layer thickness, and comparing results with the more constrained GLI approach of

Hampson-Russell.
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I review the theory behind the ThinMan and GLI approaches. For completeness, I

also discuss the time-domain sparse-layer inversion (Simmons and Backus, 1996; Zhang and

Castagna, 2011) since this type of inversion may be suitable for use on the Eagleford project

(RCP Phase XVII).

I apply spectral thin-layer reflectivity inversion to two synthetic datasets; the simple

seismic wedge model, and a more elaborate 3-D synthetic based on the Wishbone section

which was constructed from well logs, tops, and seismic horizons (Payson Todd, personal

communication). ThinMan results are compared with those of HampsonRussell’s poststack

GLI inversion (STRATA). I perform parameter testing, and compare the best results from

each method.

I then apply ThinMan to Baseline full stack data for a static interpretation of the geology.

In addition, I apply the inversion to Baseline and Monitor 2 30◦ angle stacks as a proxy for

time-lapse AVA, since ThinMan operates on post stack data. Results are then compared

with those of Copley (2018), and Utley (2017).

4.2 The Convolutional Model

The advent of inversion of poststack seismic amplitude for acoustic impedance was a

major contribution as estimations of the earth’s acoustic impedance is a very desired at-

tribute. Hampson and Russell’s (1991) ”comparison of poststack seismic inversion methods”

provides a brief, yet thorough, summary of the post stack inversion methods at the time

(Figure 4.1). All poststack inversion methods assume that a seismic trace can be modeled

with the convolution equation:

d = W ∗ r + n. (4.1)

where d is the seismic trace, W is the seismic wavelet, r is reflectivity series to be estimated in

the inversion, n is additive noise, and ∗ represents convolution. Equation 4.1 indicates that,

in theory, if we deconvolve the wavelet, remove the additive noise and reverse the amplitude

scaling, we should recover the reflectivity, and thus, the acoustic impedance (Russell and
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Hampson, 1991).

The difference between the various poststack inversion methods (Figure 4.1) is the ap-

proach at which they solve this equation, but the general approach can be visualized in

Figure 4.2.

Figure 4.1: Summary of post stack inversion methods (Modified from Russell and Hampson,
1991).

Figure 4.2: General approach to post stack inversion (Modified from Russell and Hampson,
1991).

Direct inversion methods assume that the wavelet is known exactly, and that the data

are noise free (Turin, 1957; Lindseth, 1979; Goupillaud, 1961; Robinson, 1978). The indirect
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GLI approach (Cooke and Schneider, 1983) uses a wavelet estimate obtained from a well

log-based reflection coefficient time series, or derived directly from the data, and poststack

data at the well location. The common approach within RCP has been to use a stochastic

wavelet estimate. In this case, the main assumption is that the autocorrelation of the data

is the autocorrelation of the seismic wavelet. A zero phase wavelet is then estimated that

has the same autocorrelation. Note that errors in the wavelet estimate will map into errors

in the reflectivity estimates.

4.3 Model-Based Post Stack Inversion Theory

As Figure 4.2 illustrates, poststack inversion attempts to find the reflection coefficients

that when convolved with the wavelet, model (predict) the observed seismic trace. The

objective function is a combination of the data misfit, and model reasonableness which tends

to keep the updated model close to the previous model (i.e. geologic constraints). In this

case, the model is an initial low frequency P-impedance model that is generated from well

data and horizons. The inversion process iteratively solves for reflectivity by identifying

differences between the input seismic data and the synthetic seismic formed from the model.

The iterative process modifies the model to compensate for these discrepancies. This works

to minimize the equation:

J = w1 × (d−W ∗ r) + w2 × (M −Hr). (4.2)

Where J is the objective function, d is the seismic trace, W is the wavelet, r is the

reflectivity at the current iteration, M is the initial impedance model, H is the integration

operator that when applied to the reflectivity estimate produces the updated impedance,

and w1 and w2 are weighting factors (note that w1 + w2 =1). A larger value for w1 forces a

solution that minimizes the data misfit (observed - predicted data), whereas a smaller value

of w1, and consequently a larger value of w2, forces a solution update that stays close to

the initial impedance model (HampsonRussell help documentation). To allow the model to

deviate from the initial guess, I used the stochastic modeling inversion (”soft” constraint)
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where a value for w2 is set (thus indirectly choosing a value for w1).

Multiple iterations (updates) are required because of w2 6= 0, and also because of the

requirement that the reflectivity (impedance) updates mimic the input seismic time horizons,

and updates are controlled by the pre-specified input layer time-thickness.

4.4 Thin-Bed Reflectivity Inversion Theory

The resolution of seismic data is the limiting factor for interpretation. The term ”thin-

bed” comprises of the idea of resolving power and the ability to distinguish individual prop-

erties of that bed. As the thickness of a bed decreases, the seismic response becomes a

composite since the reflections from the top and base of the thin layer interfere. The top

and base reflections are no longer resolved, and the amplitudes of the top reflection (now a

composite) vary due to the interference. For a layer time-thickness ≤ 1/8λ, where the seis-

mic wavelength λ = velocity
frequency

, the reflection response is the time derivative of the wavelet,

and the amplitudes contain the information on layer thickness. At this point, the resolving

power is lost. In the presence of noise, as field data inherently is, this value decreases to

as low as 1/4 λ. Thin-layer resolving power is dependent on both the dominate frequency

of the incident wavelet and the signal to noise ratio (Widess, 1973). Therefore, to improve

the resolution of seismic data, the frequency bandwidth must be improved; acquisition and

processing parameters are what control the spectral bandwidth.

Deconvolution is a common and conventional method that attempts to increase reso-

lution. The ultimate purpose of spiking deconvolution (applied prestack most commonly,

or poststack) is to improve the temporal resolution through the compression of the source

wavelet to a spike (Yilmaz, 2001). This process aims at increasing the resolution of reflected

events by convolving the seismogram with a wavelet inverse filter to increase the bandwidth

(whiten the amplitude spectrum) of the input data. Since the seismic signal is inherently

band limited, the user determines the usable frequency range, and typically applies a band-

pass filter to the deconvolved data.
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Note that the concepts of inversion are applicable to spiking deconvolution. The user

specifies a prewhitening factor that acts as damping in the deconvolution least-squares fil-

ter estimation. Prewhitening performs similarly to the model covariance matrix discussed

earlier. A large prewhitening value causes the least-squares filter to do less, as does a large

value of w2 in Equation 4.2. Interpretive judgement is also involved in deciding the whitened

frequency-bandwidth having sufficient signal-to-noise ratio (the passband for the subsequent

band-pass filter). Deconvolution is a bit of an art, as is inversion, with the inherent compro-

mise of data fit versus model resolution.

Thin-bed reflectivity inversion is a spectral inversion that attempts to resolve thin layers

that lie below the conventionally-believed seismic resolution without any well-data input.

Note that the ThinMan code is not documented, so inferences as to the details of the algo-

rithm are made from Portniaguine and Castagna (2004, 2005), and Puryear and Castagna

(2008).

The objective function is given by Portniaguine and Castagna (2004) as

min[||real(F (m))− d||2 + λS(m).] (4.3)

where F (m) is the predicted (modeled) data, d is the observed data, m are the thin-bed

reflectivity estimates, and S(m) is a sparsity operator. A complex-valued wavelet library is

contained in F , the details of which are not clear.

Theory behind the thin-bed reflectivity inversion is presented by Puryear and Castagna

(2008). I attempt to illustrate the concepts behind ThinMan (and spectral decomposition) in

Figures 4.3 - 4.5. Wedge model reflection coefficients as function of the layer time-thickness

are shown in Figures 4.3a and 4.3b. Reflection coefficients are opposite sign at the top and

base in Figure 4.3a, and the same sign in 4.3b. The corresponding amplitude spectra are

shown in Figures 4.3c and 4.3d.

As the wedge model time-thickness varies, the notches (blue) in the amplitude spectra

occur at different frequencies. Notches occur in the frequency domain at
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fnotch =
1

∆twedge

(4.4)

and consequently, the time-thickness can be inferred from the amplitude spectrum as

∆twedge =
1

fnotch
(4.5)

where ∆twedge is the time-thickness. Note that the above expressions are valid when the

reflection coefficients at the top and base of the wedge are equal in magnitude but opposite

in sign, as will be shown in Figure 4.4.

Spectral decomposition of 3-D data simply displays amplitude slices of various frequencies

from the amplitude spectra in plan view. Naturally, more complicated reflectivity patterns

produce more complicated amplitude spectra than those in Figure 4.3 but the principle is

the same. Lateral changes in the frequency time slices may suggest changes in bed thickness

and/or different depositional features. Note that spectral decomposition is a qualitative,

attribute-like product.

Thin-bed reflectivity inversion attempts to use the magnitudes of the amplitude spectra,

as well as infer the layer thicknesses. Amplitude spectra of the two wedge models are shown

in Figures 4.4a, and 4.4b. Figures 4.4c, and 4.4d show the amplitude spectra for layer

time-thicknesses of 10 ms (blue), 30 ms (green), and 50 ms (red). When the wedge reflection

coefficients are equal in magnitude but opposite in sign, the spectra are sine functions (Figure

4.4c). For a layer thickness of 10 ms, the first notch in the amplitude spectrum is at 100 Hz

(blue curve) as given by Equation 4.4. Similarly, for thicknesses of 30 ms and 50 ms, the

first notch in the amplitude spectrum occurs at 33 Hz (green), and 20 Hz (red), respectively.

When the reflection coefficients at the top and base of the wedge are equal in magnitude

and the same sign, the amplitude spectra are cosine functions (Figures 4.4b and 4.4d). Now

the value of fnotch in Equation 4.4 is multiplied by 0.5.
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Figure 4.3: Wedge models in time and frequency domains. a) Wedge model with a positive
(negative) reflection coefficient at the top (base). The magnitude of the reflection coefficients
are the same. b) Wedge model with reflection coefficients of the same sign at the top and
base. c) Frequency domain version of a). Blue values are low amplitude, yellow values are
high amplitude. Different wedge time thicknesses produce a different pattern of amplitude
highs and lows in the frequency domain. For a given wedge thickness, the amplitude spectra
are sine functions. d) Frequency domain version of b). Note that these data are a cosine
function since the reflection coefficients at the top and base are equal in magnitude and of
the same sign.
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Figure 4.4: Wedge models in the frequency domain. a) Amplitude spectra as in Figure
4.3c. b) Amplitude spectra as in Figure 4.3b. c) Amplitude spectra corresponding to wedge
thicknesses of 10 ms (blue), 30 ms (green), and 50 ms (red) from a). The sine curves are
apparent. d) Amplitude spectra corresponding to wedge thicknesses of 10 ms (blue), 30 ms
(green), and 50 ms (red) from b). The cosine curves are apparent.
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When the reflection coefficients at the top and base of the wedge change, the amplitude

spectra are scaled accordingly. Figures 4.3 and 4.4 assumed a reflection coefficient magnitude

= 1 for illustrative purposes. Amplitude spectra for the wedge of Figure 4.3a with reflection

coefficient magnitudes of 0.25 and 0.10 are shown in Figure 4.5. Maximum amplitude in the

amplitude spectra is two times the reflection coefficient magnitude.

The thin-layer reflectivity inversion of Portniaguine and Castagna (2004, 2005), and

Puryear and Castagna (2008), and consequently ThinMan (SigmaCubed purchased Fu-

sion Geophysical where the algorithm was developed) make use of the reflection coefficient

notches, the slope of the amplitude spectra, along with the magnitude of the spectra to

produce an estimate of thin-layer reflection coefficients in the time-space (x,y) domain.

ThinMan attempts to reproduce the input data, while maintaining a level of sparsity of

the reflection coefficient estimates (Equation 4.3). The user controls the level of sparsity;

the reflectivity output becomes sparse as λ increases. Note that this is similar to the model

covariance matrix in the GLI inversion, and the prewhitening factor in spiking deconvolution.

As the reflectivity model becomes sparser, the data misfit increases, and the higher amplitude

reflections are modeled. Again, all inverse problems have the inherent tradeoff between data

fit and model resolution.

4.5 Sparse-Layer Inversion in the Time Domain

Perhaps a more intuitive approach is sparse-layer inversion in the time domain using

thin-layer basis functions. Simmons and Backus (1996) detail a matched filter approach to

impedance estimation that classifies selected reflection events (based on trace amplitudes)

using a zero-lag cross correlation of the basis-function library (thin-layer seismic responses)

with post stack data. In their case history, they maintained sparseness in the reflectivity

estimates (no overlapping events) for the main purpose of exposing errors in their assumed

seismic wavelet. An error in the wavelet estimate, produced coherent data misfit, which was

then rectified by assuming a blue reflectivity spectrum in their wavelet estimation rather than

using a white reflectivity assumption. Today their algorithm would be termed a matching
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Figure 4.5: Wedge model of Figure 4.3a in the frequency domain. a) Amplitude spectra for all
layer time-thicknesses. Reflection coefficients at the top and base of the wedge are +0.25 and
-0.25, respectively. b) Amplitude spectra for all layer time-thicknesses. Reflection coefficients
at the top and base of the wedge are +0.10 and -0.10, respectively. c) Amplitude spectra
corresponding to wedge thicknesses of 10 ms (blue), 30 ms (green), and 50 ms (red) from
a). The sine curves are apparent. d) Amplitude spectra corresponding to wedge thicknesses
of 10 ms (blue), 30 ms (green), and 50 ms (red) from b). The cosine curves are apparent.
The key point is that when the reflection coefficients differ, the amplitudes in the frequency
domain differ as in c) versus d).
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pursuit algorithm (Chen et al., 2001).

Zhang and Castagna (2011) rediscover the sparse-layer inversion of Simmons and Backus

(1996), and term the thin-layer basis functions as a dictionary and employ a basis pur-

suit algorithm for their inversion. Both approaches involve a type of compressive sensing;

seismic reflections are modeled as a combination of basis functions, or dictionary responses

producing a sparse-layer reflectivity output. Sparse-layer inversion can output reflectivity

estimates of higher temporal frequency than the input data without amplifying the noise,

since deconvolution is not involved. The regularization parameter, λ, controls the sparsity of

the reflectivity estimates. A sparse reflectivity model is produced when λ is relatively large.

When λ is small, the data misfit is minimized, potentially at the expense of an unreasonable

reflectivity model.

Sparse-layer inversion begins with forward modeling where basis-functions, or a wavelet/

wedge dictionary/library is specified. This first step attempts to model all possible events

within the data by convolving a wavelet with a set of reflectivity series of known impedance.

To start simple, the forward model is the convolution model (Equation 4.1).

The net response sourced from N calibrated seismic wavelets that have amplitudes and

arrival times equivalent to the reflection coefficients results in a seismic trace. Simmons

and Backus (1996) model the seismic responses as a combination of thin-beds and simple

interfaces. For a simple interface, each seismic wavelet, w, is weighted by the reflection

coefficient Ri and located at two-wave traveltime τi d(t) are the modeled data, w is the

wavelet that is weighted by the reflection coefficient R, τi is the two-wave travel time and n

is additive noise.

d =
N∑
i=1

Riw(t− τj) + n. (4.6)

Equation 4.7 details the extension of Equation 4.6 that includes the reflectivity of a thin-

bed. The first term in this equation is the reflectivity of a thin-bed, where the top has a
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reflection coefficient, Ri, located at time τi and a two-way time thickness ∆τi. The base of

the reflector is equal in magnitude and opposite in sign. Where Figure 4.6 is an example of

the basis-functions from Simmons and Backus (1996) that displays the impedance models

(a), the reflectivity series (b), and the seismic response (c). Note that the basis functions

take both high and low (or positive/negative, even/odd) impedances into consideration -

polarity is controlled by this.

d(t) =
N∑
i=1

Ri[w(t− τi)− w(t− τi −∆τi)] +
M∑
j=1

Rjw(t− τj) + n(t).

(4.7)

Figure 4.6: Example of the basis function that display the modeled impedance (a), the
reflectivity series (b), and the seismic response (c) (Simmons and Backus, 1996).
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Zhang and Castagna (2011) derive their basis library (wedge dictionary) by modeling the

top and base reflectors as two impulse functions cδ(t) and dδ(t + n∆t), where n∆t is time

thickness of a thin-bed, ∆t is the sample rate and c and d are the two reflection coefficients.

To account for positive and negative reflectors, each pair is broken down into an even re

and odd ro pair with coefficients a and b (Equations 4.8, 4.9 and 4.10). The coefficients

are varied from -1 to +1. To account for a range of bed thicknesses n ranges from zero to

N to N∆t. The basis library this approach derives is very similar to Simmons and Backus

(1996) (Figure 4.6). Even and odd are co-equivalent to high impedance and low impedance,

respectively.

re = δ(t) + δ(t+ n∆t)

(4.8)

ro = δ(t)− δ(t+ n∆t)

(4.9)

cδ(t) + dδ(t+ n∆t) = are + bro

(4.10)

The inverse problem from Simmons and Backus (1996) is an iterative process that builds

a model of the seismic response one event at a time starting with the largest absolute

amplitude, similar to matching pursuit (MP). A match filter determines which basis function

response best fits the data, Figure 4.7 shows the process. The algorithm first scans the trace

to find the largest absolute amplitude, the real seismic trace is displayed on the right. The
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basis functions are directly to the left of the seismic trace. The amplitudes of the basis

functions are scaled to match those of the selected event. A normalized zero-lag cross-

correlation of the event with the modeled basis functions determines which of the basis

functions best matches the data (shown on the left of Figure 4.7). The basis function

with the highest cross-correlation value is selected and then subtracted from the seismic to

generate the misfit (or residual). The misfit is then used as the input for the next iteration.

This process is repeated for a user-specified number of times.

Figure 4.7: Method for determining which of the basis functions best models the data. This
is a zero-lag cross correlation. The basis function with the highest cross correlation value is
selected (Simmons and Backus, 1996).

Zhang and Castagna (2011) solve the inverse problem with the basis pursuit algorithm

detailed fully in Chen et al. (2001). This process begins with rewriting the convolution

model, Equation 4.1, in the form of Equation 4.11 where d is the data vector, m is the

model parameter, G is the kernel and n is additive noise. Equation 4.12 is the result where
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s is the column vector that represents the seismic response, r is the reflectivity series column

vector, W is the diagonal wavelet kernel matrix and n is additive noise.

d = Gm+ n.

(4.11)

s = Wr + n.

(4.12)

min[||d-Gm||2 + λ||m||1].

(4.13)

The parameters in Equation 4.12 are solved with Basis Pursuit (BP) by minimizing the

L2 norm of error term and the L1 norm of the solution (Equation 4.13). BP works by

obtaining representations of the signal in an over complete dictionary where it works as an

optimization principle rather than an algorithm. BP is useful in noisy data as it can suppress

noise while preserving the structure built within the dictionary. In BP, λ controls the size

of the residual and the sparsness of the solution, as well as balances the inverted reflectivity

resolution and noise (Zhang and Castagna, 2011). As λ approaches zero, the residual goes

to zero and may cause noise amplification. In contrast, as λ approaches ∞, the residual

increases and decreases the resolution of the inverted reflectivity. For the L1 norm of the

solution, λ dictates the sparsness of the modeled data that gets inverted for (Chen et al.

(2001)). The L2 norm attempts to fit the data whereas the L1 controls the sparsity.
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Both methods heavily rely on the correct wavelet. As wavelets are commonly derived

from the seismic data itself, the quality of the wavelet is directly dependent on the quality of

the data. With any inversion, the integrity of the results will be on par with the condition

of the wavelet. It is extremely important to begin the inversion with a wavelet that contains

the appropriate amplitude and phase spectrum. The phase of the inversion and statistics of

the reflectivity will be affected if it is run with an incorrect wavelet (Zhang and Castagna,

2011).

4.6 Wedge Model Testing

A synthetic wedge model (30 Hz Ricker wavelet) was run through both the ThinMan

and HampsonRussell (HRS) post stack inversion packages to understand how the various

parameters influence the results. Within ThinMan the three most critical variables are

wavelet count, wavelet size and regularization. The regularization parameter pertains to λ

from Equation 4.3 and is what controls the sparsity of the inversion. The larger this value,

the more sparse the solution, and vice-versa. During testing the wavecount and wavelet size

were held constant and the regularization value was varied between 5 and 0.2. The two most

critical parameters controlling the output solution from HRS post stack inversion are the

model weighting factor and the wavelet. During testing the wavelet was held constant and

the weighting factor was varied between 0.1 and 0.8.

The wedge was run through ThinMan and the outputs include: modeled synthetic, rel-

ative acoustic impedance, reflection coefficients, and the error or data misfit. The two

examples provided were run with a regularization parameter of 0.2 and 5. The output syn-

thetics and the input wedge are displayed in Figure 4.8. The output synthetic run with a

regularization parameter of 0.2 (a) appears to match the input wedge (c) better than the

synthetic run with a value of 5. As the wedge becomes wider, the synthetic with the regular-

ization parameter of 5 becomes jittery and discontinuous. For a direct comparison, Figure

4.9 displays the misfit which shows the difference between the output synthetic and input

data with a consistent scale bar. When the scale bar is consistent, the misfit for the regu-
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larization parameter of 0.2 (a) appears to be zero where there contains data in the misfit for

the regularization parameter of 5 (b). The misfit for the regularization parameter of 0.2 is

again displayed in Figure 4.10 with the same color bar as Figure 4.9 (a) and with a scale bar

that allows for visualization of the amplitudes (b). In general, the misfit from the inversion

with the regularization parameter of 0.2 is lower in amplitude than that with 5.

Figure 4.11 displays the respective output reflection coefficients compared to the input

wedge. Both regularization parameters output reflection coefficients that give a general trend

of a wedge and both contain events that are not related to the input wedge. The reflection

coefficients run with a regularization parameter of 0.2 contains a significant amount of noise

unrelated to the wedge, this output appears jittery. This output also contains events that

look like ”beds” above and below the actual events. ThinMan estimates time and space

variant wavelets, so in this case, the wavelet estimates are likely getting confused by the

variable time thickness of the wedge or there is an issue with the phase. The reflection

coefficients run with a value of 5 also contain ”beds” below and above the actual events

that could be misleading during interpretation. As Portniaguine and Castagna (2005) detail,

when there are issues with the phase of the wavelet, the inversion introduces artifacts as seen

in both parameter tests. Although the inversion is not perfect, there are strong reflection

coefficients with minor artifacts around them. Errors with the wavelet map into errors in

model parameters, this is a fundamental issue for all inversions that can be considered over

parameterized, or inversions that contain many user input model parameters.

Both relative acoustic impedance results, Figure 4.12, display the same wedge trend.

The result of the 0.2 value (a) appears to be have a higher resolution, but artifacts do exist

outside of the wedge. The results from a value of 5 (b) are lower in resolution, but contain

less artifacts than the relative acoustic impedance volume with a value of 0.2. Although the

synthetic and data misfit from the inversion run with the regularization parameter of 0.2 are

more appealing as the synthetic data better matches the input data, the inversion results

run with a value of 5 are overall, more appealing for interpretation.
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In addition, the wedge was run through the poststack inversion within HampsonRussell

and the outputs include the synthetic and the acoustic impedance. There is an option

to output absolute acoustic impedance, but to directly compare to the ThinMan results,

I output relative acoustic impedance. In addition, a difference volume (data misfit) was

created by subtracting the initial data from the output synthetic. During these tests, the

wavelet was kept consistent and the weighting factor was varied. Figure 4.13 shows the

synthetic data run with a weighting factor of 0.1 (a), 0.5 (b) and, 0.8 (c). The synthetic

for each test appear very similar and look like the input data. Additionaly, the data misfits

(Figure 4.14) from 0.5 (b) and 0.8 (c) appear the same, whereas the misfit from 0.1 (a) is

slightly different and contains erroneous amplitudes away from the wedge. Like the misfit,

the relative impedance from 0.5 and 0.8 are very similar. The desired solution for this

inversion is run with a weighting factor of 0.1 (as the background P-impedance volume is

a constant value more weight should be placed on the input seismic traces rather than the

initial model).

The comparison of the best results from ThinMan and HampsonRussell includes the rel-

ative acoustic impedance volumes in Figure 4.16 and the misfits in Figure 4.16. The relative

acoustic impedance from HRS (a) are significantly smoother and contain more artifacts than

the ThinMan results (b). The misfit from HRS (a) is much larger than the misfit from Thin-

Man (b). Looking at the relative impedance extracted from the top of the wedge model from

both the results from HRS and ThinMan, as seen in Figure 4.18, the relative impedance as

the bed thins differs between each output. The HRS relative impedance gradually increases

as the bed thins and then stays at a constant value. The ThinMan relative impedance grad-

ually increases to a maximum and then drops back off the the original value. In reality,

the relative impedance of the top reflector is a constant value. The results from both HRS

and ThinMan do not accurately resolve the relative impedance. Comparing the HRS and

ThinMan results, ThinMan does a better job at modeling the data. Overall, this is not

necessarily a bad thing, just something to keep in mind during interpretation.
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Figure 4.8: ThinMan inversion of wedge model a) Output synthetic wedge run with λ = 0.2.
b) Output synthetic run with λ = 5. c) Input wedge model.
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Figure 4.9: ThinMan inversion of wedge model - with a consistent color bar a) Misft of the
output synthetic and input wedge run with λ = 0.2. b) Misft of the output synthetic and
input wedge run with λ = 5. c) Input wedge model.

93



Figure 4.10: Misfit of the output synthetic from ThinMan and the input wedge model run
with a λ = 0.2 a) Misfit with a color bar that ranges in amplitude from 1 to -1. b) Misfit
with a color bar that ranges in amplitude from 0.1 to -0.1. This displays that the misfit
decreases significantly when λ is small.
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Figure 4.11: ThinMan inversion of wedge model a) Output reflection coefficients of the wedge
run with λ = 0.2. b) Output reflection coefficients of the wedge run with λ = 5. c) Input
wedge model.
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Figure 4.12: ThinMan inversion of wedge model a) Output relative acoustic impedance of
the wedge run with λ = 0.2. b) Output relative acoustic impedance of the wedge run with
λ = 5. c) Input wedge model
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Figure 4.13: HampsonRussell post stack inversion of wedge model a) Output synthetic wedge
run with a weighting factor = 0.1. b) Output synthetic wedge run with a weighting factor
= 0.5. c) Output synthetic wedge run with a weighting factor = 0.8.
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Figure 4.14: HampsonRussell post stack inversion of wedge model a) Misft of the output
synthetic and input wedge run with a weighting factor = 0.1. b) Misft of the output synthetic
and input wedge run with a weighting factor = 0.5. c) Misft of the output synthetic and
input wedge run with a weighting factor = 0.8.
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Figure 4.15: HampsonRussell post stack inversion of wedge model a) Inverted relative
impedance run with a weighting factor = 0.1. b) Inverted relative impedance run with
a weighting factor = 0.5. c) Inverted relative impedance run with a weighting factor = 0.8.
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Figure 4.16: Comparison between ThinMan inversion and HampsonRussell post stack inver-
sion a) HampsonRussell best result with a weighting factor = 0.1 b) ThinMan best result
with a λ = 5. c) Input wedge model.
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Figure 4.17: Comparison between ThinMan inversion and HampsonRussell post stack in-
version a) Misfit between HampsonRussell best result synthetic and input wedge model.
b) Misfit between ThinMan best result synthetic and input wedge model. c) Input wedge
model.
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Figure 4.18: Comparison between the ThinMan inversion and HampsonRussell poststack
inversion a) Bottom - Relative impedance from HampsonRussell best resuls. Top - Extracted
relative impedance from the dash-white line. b) Bottom - Relative impedance from ThinMan
best result. Top - Extracted relative impedance from the dash-white line.
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4.7 Wattenberg Synthetic Testing

The Wattenberg synthetic volume was used to test the capabilities of the ThinMan and

HRS inversions. The specifics of this synthetic volume are detailed in Chapter 1. The

acoustic impedance volume created with the vertical wells in the section was converted into

reflection coefficients. The reflection coefficients were then convolved with a 30hz wavelet to

represent the Turkey Shoot Baseline survey, an example inline is shown in Figure 4.19. This

volume was then run through both the ThinMan and HampsonRussel post stack inversion.

Figure 4.19: Example inline from the Wattenberg synthetic model.

The regularization parameter was tested at 1, 0.2, 0.02 and, 0.001. Figures 4.20-4.23 dis-

play the synthetic, the error or misfit, reflection coefficients and relative acoustic impedance

from the test line. Images a-d were run with regularization parameters 1, 0.2, 0.02 and,

0.001, respectively. The output from the inversion can be viewed as spectrally broadened

seismic data (Chopra et al., 2009).
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Visually, the synthetic volumes, Figures 4.20a-d, do not contain any apparent differences.

There exists some slight amplitude variations, but overall these appear to be the same. The

misfit is the difference between the synthetic and the input volumes (Figure 4.21), this output

volume provides insight as to how well the modeled data matches the input. The misfit from

the sparsest result, Figure 4.21a, is the largest. This volume looks like a scaled down version

of the input indicating this regularization parameter does not result in the best matched

solution. Figure 4.21b contains a smaller misfit and less coherent energy than Figure 4.21a.

Both Figures 4.21c and d have a very small misfit, although there is a small amount of

coherent energy.

The output reflection coefficients in Figure 4.22 attempt to provide more detailed re-

flection information in both extra reflection cycles and fault detail (Chopra et al., 2009).

Comparing Figures 4.22a and d we can observe the two extremes: Figure 4.22a is the vol-

ume with the regularization parameter = 1, i.e. the most sparse and, Figure 4.22d is the

volume with the regularization parameter = 0.001, i.e. the least sparse. In the most sparse

case, the inversion is still modeling more events than previously detectable on the input vol-

ume, yet it does not model as many events as the least sparse case. The reflection coefficient

volumes can be useful in detecting the various chalk and marl benches within the Niobrara

package.

The output relative acoustic impedance volumes are seen in Figure 4.23 where 4.23e is the

relative impedance volume used to create the input synthetic volume. As the regularization

parameter is decreased (less sparse), the inversion outputs a volume with increasing detail.

To determine how the thin-bed reflectivity inversion compares to the more commonly

understood inversion process in CGG’s HampsonRussell (HRS) package, a post stack inver-

sion on the synthetic volume was completed. The two most critical parameters controlling

the output solution are the weighting factor and the wavelet. Figures 4.24-4.26 display three

example lines from the testing of the weighting factor. In each figure, a) was tested at 0.2,

b) at 0.5 and, c) at 0.8. There is not a significant difference between a weighting factor
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Figure 4.20: ThinMan inversion results from the Wattenberg Synthetic - inverted synthetic
volumes with a) regularization parameter = 1. b) regularization paramter = 0.2. c) regu-
larization paramter = 0.02. d) regularization paramter = 0.001. (red=positive).

Figure 4.21: ThinMan inversion results from the Wattenberg Synthetic - misfit volumes
(inverted synthetic - input data) with a) Regularization parameter = 1. b) Regularization
paramter = 0.2. c) Regularization paramter = 0.02. d) regularization paramter = 0.001.
(red=positive).
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Figure 4.22: ThinMan inversion results from the Wattenberg Synthetic - inverted reflection
coefficient volumes with a) Regularization parameter = 1. b) Regularization paramter = 0.2.
c) Regularization paramter = 0.02. d) Regularization paramter = 0.001. (red=positive).

of 0.2 and 0.5. Increasing this parameter to 0.8 greatly impacts the results and outputs a

solution with the greatest resolution and detail. In addition to weighting factors, two differ-

ent wavelets (128ms and 100ms) were tested. The inversion results run with the 128ms and

100ms wavelets are shown in Figures 4.27a and b, respectively.

The inversion results run with a weighting factor of 0.8 and 128ms wavelets were com-

pared with the thin-bed reflectivity results. Figures 4.28 and 4.29 show the relative acoustic

impedance volumes from the HRS inversion (left), the ThinMan inversion (middle), and the

input synthetic (right). The top row display the line fully zoomed out, the middle row zooms

further in, and the bottom row zooms into the Niobrara reservoir interval.

The high resolution inversion results from ThinMan may be difficult for interpreters to

believe as we conventionally believe the standard seismic resolution limitation to be λ/4.

In Figure 4.31 the output reflection coefficients were convolved with both a 30hz and 50hz

wavelet and then correlated with wells in the study area. The correlation coefficients for both

the 30hz and 50hz ties were greater than 90%. These well ties were performed for quality
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Figure 4.23: ThinMan inversion results from the Wattenberg Synthetic - inverted relative
impedance volumes with a) Regularization parameter = 1. b) Regularization paramter =
0.2. c) Regularization paramter = 0.02. d) Regularization paramter = 0.001. e) The relative
impedance volume used to derive the Wattenberg synethic.
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Figure 4.24: Example line 1 - HRS post stack inversion: testing weighting factors a) 0.2 b)
0.5 and c) 0.8.
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Figure 4.25: Example line 2 - HRS post stack inversion: testing weighting factors a) 0.2 b)
0.5 and c) 0.8.
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Figure 4.26: Example line 3 - HRS post stack inversion: testing weighting factors a) 0.2 b)
0.5 and c) 0.8.
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Figure 4.27: Example line 1 - HRS post stack inversion: testing wavelet length a) 128 ms b)
100ms.

Figure 4.28: Post stack inversion results from HRS (left) and ThinMan (middle) compared
to the relative imepedance volume used to create the input synthetic volume.
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Figure 4.29: Post stack inversion results from HRS (left) and ThinMan (middle) compared
to the relative imepedance volume used to create the input synthetic volume.
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control purposes. As the inversions conducted with the Wattenberg synthetic volume is

controlled, i.e., we know the solutions, this step in the quality control process verifies that

the inversion is appropriately modeling the input data.

The next step in the quality control process is to compare the input and output reflec-

tion character. In Figure 4.30, the input seismic is shown on the left, the inverted reflection

coefficients in the middle and the volume created from convolving the output reflection co-

efficients with a 50hz wavelet is on the right. This gives insight to how well the inversion

matches the input data.

Figure 4.30: a) The Wattenberg modeled data convolved with a 30hz wavelet, general rep-
resentation of our area of interest. b) The reflection coefficients output from the ThinMan
inversion. c) The output reflection coefficients are convolved with a 50hz wavelet.
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Figure 4.31: The inverted reflection coefficients from the Wattenberg synthetic volume are
convolved with a 30hz (top) and 50hz (bottom) Ricker wavelet and then tied with a vertical
well in the section. The cross correlations between these are above 90%.
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4.8 Discussion

Although wedge tuning effects were present in both the ThinMan and HRS inversion,

the ThinMan inverted relative impedance was more consistent than the HRS solution. The

next step would be to compare these to the input acoustic impedance to determine how close

they are to the actual answer. The ThinMan refelction coefficients indicate that there is an

inherent issue with phase of the wavelet. The artifacts surrounding the strong events look

similar to the case study from Portniaguine and Castagna (2005). This is something to keep

in mind during interpretation. Overall, the ThinMan solution is superior.

The Wattenberg synthetic was useful in determining how both inversions match the input

data (more complex and comparable to field data). Although ThinMan’s inversion contains

jittery-effects, the solution is more representative of the input than the HRS inversion. As the

HRS inversion is very constrained, the solution is overly smooth and contains lower resolution

than the ThinMan inversion. This is important to consider during interpretation of either

inversions. If the goal of the inversion is to detect anomalous features, the overly smooth

solution (from horizons and block size) may not resolve those features. I am recommending

to model such an example to gain an understanding on how both HRS and ThinMan handle

these effects and features.

Taking these results and brining them into interpretation, there are a few key things to

keep in mind:

• HRS solutions are overly smooth

• ThinMan solutions contain jittery-effects that are not geological,but potentially con-

trolled by the regularization parameter (testing is critical)

• ThinMan solutions are very high resolution, quality control of the results is essential
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CHAPTER 5

APPLICATION AND INTERPRETATION OF THIN-BED REFLECTIVITY

INVERSION

5.1 Static Conditions - Wattenberg Baseline QC

The ThinMan inversion of the Wattenberg synthetic volume indicates that the thin-bed

reflectivity inversion produces high resolution relative impedance volumes while being robust

(not requiring an initial model). Previous work within the RCP has determined that the

landing position of the horizontal wells often went out of stage. As a result, the reservoir

response varies from stage to stage by the varying geomechanical properties and that the

geomechanical heterogeneity within the section is complex (Alfataierge, 2017). In addition,

(Mabrey, 2016) conducted a rock quality index (RQI) analysis on the horizontal wells within

the Wishbone section and proposed that the overall goal is to optimize completions by

designing perforation clusters based on high rock quality and low stress. Harryandi (2017)

used a pre-stack P-wave simultaneous seismic inversion for facies modeling where her results

show probable chalk thickness. She proposes to use facies modeling during well planning

to target the thickest and most continuous chalk intervals to optimize production. The

motivation behind the thin-bed reflectivity inversion is similar to previous work as it is

proposing to utilize geophysics to guide both the drill bit and completion designs. The

thin-bed inversion is less laterally constrained than are HampsonRussell or Jason inversions.

Consequently, thin-bed reflectivity inversion may be better suited for detecting anomalies

Ultimately, we want to optimize production while maintaining relatively low costs.

The migrated, full-stack Turkey Shoot Baseline survey was run through the ThinMan

inversion in attempts to resolve the chalk benches within the Niobrara formation. The

ThinMan inversion attempts to increase the frequency content of the data without boosting

noise. Figure 5.1 displays the amplitude spectrum from the input field data (blue) and the
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inverted reflection coefficients (red). Note the significant increase in the frequency band-

width of the reflection coefficients. This massive increase may draw red flags as is not part

of the input data. Keep in mind that this inversion builds a known dictionary of all pos-

sible events (the model) and attempts to minimize the objective function by matching the

model with the input data. The events within the dictionary contain information about the

reflection coefficients and the relative acoustic impedance of those events. This is where the

added bandwidth is derived. The inversion works to minimize the objective function while

maintaining a level of sparsity.

To quality control (QC) these results, the output reflection coefficients were convolved

with both a 30hz and 50hz Ricker wavelet and compared with data from the well locations.

Data from the well locations were used for quality control purposes and were not used

during the inversion process. These volumes were correlated with the vertical wells and

RMS amplitude slices were extracted. In addition, the relative impedances at each well

location is overlain on the inversion results. To visualize how the inversion results of the

field data compare with the Wattenberg synthetic inversion, the reflection coefficients at each

well are analyzed.

In Figure 5.2, the synthetic seismograms produced by convolving the output reflection

coefficients with both a 30hz and 50hz Ricker wavelet are correlated with the sonic logs.

This correlation checks the stability of the time variant set of extracted wavelets within the

reservoir interval. There is a very good match between the seismic and the sonic logs, the

correlation coefficients for both the 30hz and 50hz data are over 90% indicating that the

time variant wavelet is stable.

Chopra and Marfurt (2005) claim that attributes run on frequency enhanced seismic

data that produce more significant and detailed interpretations. These fine details include

resolving channels, faults/fractures, and complex onlaps and off-laps. Figures 5.3-5.5 display

the RMS amplitude slices on the lower Pierre, top Niobrara and Codell reflectors from

both the input field data and the 50hz data. As the depositional environment of these
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three formations would predict, the RMS amplitude slices are not resolving channels or

onlaps/offlaps. Faults on each three slices from the 50hz data are higher resolution and

better resolved than the slices from the input field data. Specifically on the top Niobrara,

both grabens and the faults in the North-West corner are better resolved.

Figures 5.6-5.14 display the relative acoustic impedance from each well overlain on the

inverted relative acoustic impedance. From top to bottom, the white arrow points to the

top of the Niobrara and the black arrows point to the B chalk, C chalk and D interval,

respectively. As one would expect, the actual relative impedance from the well is higher

resolution than the inverted data, but overall there is a good match. The B and C chalk

benches are consistently resolved throughout the entirety of the survey. The conventional

seismic resolution of the P-wave data is approximately 65 ft. From the relative acoustic

impedance volume, the measured thickness of both the B and C chalks are approximately

30-35 ft.

Taking a closer look at the fine details, Figures 5.15-5.17 show the reflection coefficients

from the inverted Wattenberg synthetic (a), inverted Baseline survey (b), and the input

seismic from the Baseline survey (c). Overlain on the data is gamma ray and the tops of the

formations. The top Niobrara reflector is a strong positive (red) reflector. The strong event

gets broken down into three positive reflectors with the event in the middle correlating to the

top Niobrara and the one below it, the B chalk. Two events below the B chalk, the negative

(blue) reflector correlates to the C chalk. Similar to what was observed on the relative

acoustic impedance volumes, the reflection coefficients are consistently resolving the B and

C chalk intervals. Note the lack in lateral smoothness, as this inversion is a trace-by-trace

process, the solution works to detect small features and lateral anomalies.
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Figure 5.1: Comparison of the input amplitude spectrum with the inverted reflection coeffi-
cients. Note the large increase in frequency content on the reflection coefficients.
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Figure 5.2: The inverted reflection coefficients from the Baseline field data are convolved
with a 30hz (top) and 50hz (bottom) Ricker wavelet and then tied with a vertical well in
the section. The cross correlations between these are above 90%.
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Figure 5.3: RMS amplitude slices on a lower Pierre reflector a) Data slice from the P-wave
field data. b) Data slices from the reflection coefficients convolved with a 50hz wavelet.

Figure 5.4: RMS amplitude slices on the top Niobrara reflector a) Data slice from the P-wave
field data. b) Data slices from the reflection coefficients convolved with a 50hz wavelet.
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Figure 5.5: RMS amplitude slices on the Codell reflector a) Data slice from the P-wave field
data. b) Data slices from the reflection coefficients convolved with a 50hz wavelet.

Figure 5.6: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.
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Figure 5.7: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.

Figure 5.8: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.
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Figure 5.9: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.

Figure 5.10: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.
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Figure 5.11: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.

Figure 5.12: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.
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Figure 5.13: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.

Figure 5.14: Relative acoustic impedance result from the Baseline survey (static condition)
with relative impedance from the Wattenberg synthetic model overlain on the well location.
The RMS amplitude slice on the top Niobrara reflector (from the input field data) is located
in the bottom right corner as a basemap. The red star is the location of the well being used
to QC the relative impedance results.
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Figure 5.15: The inverted reflection coefficients from the Wattenberg synthetic volume (a)
and the Baseline field data (b) are compared to the Baseline field data (c). The well location
is depicted with the star on the basemap on the right. At the well location, gamma ray and
well tops are displayed.
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Figure 5.16: The inverted reflection coefficients from the Wattenberg synthetic volume (a)
and the Baseline field data (b) are compared to the Baseline field data (c). The well location
is depicted with the star on the basemap on the right. At the well location, gamma ray and
well tops are displayed.

Figure 5.17: The inverted reflection coefficients from the Wattenberg synthetic volume (a)
and the Baseline field data (b) are compared to the Baseline field data (c). The well location
is depicted with the star on the basemap on the right. At the well location, gamma ray and
well tops are displayed.
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5.2 Static Conditions - Wattenberg Baseline Interpretation

Figure 5.18 shows a comparison of an inline from the Baseline survey and its corre-

sponding reflectivity section. The ThinMan inversion outputs the reflection coefficients that

provide extra detail, both in terms of extra reflection cycles and fault detail. Notice the

extra reflection detail resolved on the top Niobrara reflector. The strong, positive event gets

broken down into three and, relating this back to Figures 5.15-5.17, the positive event below

the top Niobrara has been correlated to the B chalk interval. The potential doubt that the

extra detail is not legitimate can be counter-argued by the correlated well ties in Figure 4.31.

The correlation is very strong, both the 30hz and 50hz data have a correlation coefficient

greater than 90%. Note that any correlation or comparison with well data is a blind well test

as there was no well information utilized during the inversion process. The extra reflection

cycles are matching with the corresponding cycles on the well data.

Figure 5.18: a) Example inline from the input seismic data. b) Inverted reflection coefficients.
Note the extra reflection cycles and fault detail.

Drake and Hawkins (2012) presented a sequence stratigraphic framework for the Niobrara

Formation in the DJ Basin in the Search and Discovery Article #50757 that is used to geolog-

ically verify the results from the Baseline/static thin-bed reflectivity inversion. The reference

well used to build the sequence stratigraphic framework is located within a 10-square mile

radius from our study area and is perfect for correlating and verifying the inversion results.

Figure 5.19 displays the general paleogeography during the deposition of the Niobrara and
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the geographical location of the reference well. Relating the inversion findings back to ge-

ology it is important to remember that the sedimentary record is inherently complicated

by relative sea level and that the various chalk and marl benches display general trends

within the DJ Basin (Drake and Hawkins, 2012). The sequence stratigraphic framework is

generally preferred over the lithostratigraphy (Figure 5.20), as mapping the stratigraphic

sequence trends correlate better to the preservation and non-preservation of organic mate-

rial. The chalk benches were deposited during highstands where there was a shoreward shift

in facies and can be correlated with the maximum flooding surfaces. Figure 5.21 correlates

the maximum flooding surfaces on gamma ray and resistivity from the reference well, to the

well data derived relative acoustic impedance and the inverted relative impedance from the

Baseline survey within the Wishbone section.

Figure 5.19: Paleogeographic map depicting depositional environment (left). The black box
indicates the regional study area. Zooming into the study area (left), the DJ Basin is outlined
in yellow and the green dot indicates the location of the reference well (Drake and Hawkins,
2012).

The inverted relative impedance is not fully resolving the D interval as it is lumping

together the D marl and the Fort Hays. The inverted relative impedance and reflection

coefficients are resolving both the B and C chalk intervals. As the Wishbone is heavily

faulted, the inverted relative impedance volume was flattened on the top Niobrara and
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Figure 5.20: Gamma ray and resistivity from the Pioneer reference well interpreted with the
relative impedance from the Wishbone section and the inverted relative impedance from the
seismic. The black boxes shadded in blue depict the different intervals established in the
sequence stratigraphic framework (Modified from Drake and Hawkins, 2012).
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Figure 5.21: Gamma ray and resistivity from the Pioneer reference well interpreted with the
relative impedance from the Wishbone section and the inverted relative impedance from the
seismic. The black lines indicate the maximum flooding surfaces (Modified from Drake and
Hawkins, 2012).
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the Greenhorn formation in order to perform stratal slicing. The goal behind the stratal

slicing is to characterize the distribution and physical properties of the reservoir (Zeng, 2018;

Zeng et al., 1998a; Zeng et al., 1998b). As I have inverted the seismic for relative acoustic

impedance and correlated these relative values back to geology at the well locations, the

next step is to map their spatial variability and discontinuities/continuities. To relate these

results back to stratigraphy, the stratal slices are compared with the isochron maps from

Drake and Hawkins study. Figure 5.22 displays the flattened inline A-A’ that cuts through

the Wishbone Section. The arrow and the dotted black line indicate where in time the

relative impedance slice is located. The relative impedance of the B chalk within this area

can be correlated to the isochron thickness map of the B chalk in Figure 5.23. The relative

impedance of the B chalk tends to be very positive. On the inversion results the B chalk

appears to be very continuous, yet the its unique character seems to decrease to the south.

Looking at the isochron map, the B chalk thickness appears to be decreasing just south of

the reference well (i.e. the location of the Wishbone section.) Moving down in section, the

C chalk character within the relative impedance slice in Figure 5.24 appears very continuous

and does not seem to be changing within the study area. Spatially around the reference

well, Figure 5.25 shows that the isochron thickness is not changing. Similar to the character

of the C chalk, the D interval (D marl and Ft. Hays) is very continuous without any lateral

variation (Figure 5.26). Around the reference well in Figure 5.27, there is a gradual increase

in thickness to the south, but in general, the thickness within the study area is continuous.

The facies inversion from Harryandi (2017) produces a RMS amplitude map of the pure

chalk facies that include the B and C chalk benches of the Niobrara (Figure 5.29). The warm

colors indicate areas that have a high probability of having thicker chalk benches. Within

the center of the Wishbone section there is high probability of a thick chalk interval. This

decreases to the North and South. Comparing this result to the ThinMan relative impedance

maps of the B and C chalk benches, each map observes a decrease to the South. These maps

differ to the North, as the B chalk increases in relative impedance.
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Figure 5.22: Seismic line A-A’ flattened on the Top Niobrara and the Graneros (left).The
black dotted line and black arrow indicate the interval the stratal slice (b) is extracted from.
This stratal slice is representative of the B chalk.

Figure 5.23: Isochron map of the B chalk (left). The green star is the Pioneer reference well
location. Gamma ray and resistivity from the Pioneer reference well interpreted with the
relative impedance from the Wishbone section and the inverted relative impedance from the
seismic (right) (Modified from Drake and Hawkins, 2012).
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Figure 5.24: Seismic line A-A’ flattened on the Top Niobrara and the Graneros (left).The
black dotted line and black arrow indicate the interval the stratal slice (b) is extracted from.
This stratal slice is representative of the C chalk.

Figure 5.25: Isochron map of the C chalk (left). The green star is the Pioneer reference well
location. Gamma ray and resistivity from the Pioneer reference well interpreted with the
relative impedance from the Wishbone section and the inverted relative impedance from the
seismic (right) (Modified from Drake and Hawkins, 2012).
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Figure 5.26: Seismic line A-A’ flattened on the Top Niobrara and the Graneros (left).The
black dotted line and black arrow indicate the interval the stratal slice (b) is extracted from.
This stratal slice is representative of the D interval.

Figure 5.27: Isochron map of the D interval (left). The green star is the Pioneer reference
well location. Gamma ray and resistivity from the Pioneer reference well interpreted with
the relative impedance from the Wishbone section and the inverted relative impedance from
the seismic (right) (Modified from Drake and Hawkins, 2012).
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Figure 5.28: Seismic line A-A’ flattened on the Top Niobrara and the Graneros (left).The
black dotted line and black arrow indicate the interval the stratal slice (b) is extracted from.
This stratal slice is representative of the Codell formation.

Figure 5.29: Extraction map of the pure chalk facies probability. RMS amplitude of the pure
chalk facies probability from the Top Niobrara horizon to 20ms below, including the B and
C chalk benches. The outlined box displays the location of the Wishbone section (Modified
from Harryandi, 2017).

137



5.3 Dynamic Conditions - Wattenberg Production

Previous work in the Wishbone section has theorized that the reservoir is experiencing

the most change in the Western portion of the section. Figure 5.30 displays the simulated

gas saturation (a) and the 2D microseismic events (b). Here it is observed that the heavier

microseismic activity coincides with the higher modeled gas saturation. In addition to gas

saturation and microseismic, there is higher fracture conductivity, a zipper fracture, and

more proppant and hydraulic fracture fluid used during completions that are correlated to

higher producing wells to the West. But, through the analysis recently conducted, this

theory is refined.

The Turkey Shoot survey contains a Baseline survey that was acquired after the wells in

the Wishbone section were drilled, and a Monitor 2 survey that was acquired after two years

of production. To gain an understanding of how the reservoir is changing after two years of

production, the inversion was preformed in a time-lapse sense. Stacks with an angle range of

30− 40◦s from the Baseline and Monitor 2 surveys were utilized for a pseudo AVO analysis

(as we expect the greatest changes around this angle range). The gather conditioning and

cross-equalization of these data was performed by Copley (2018). Preconditioning included

trim-statics and division into the angle stacks. The cross-equalization process consisted of

global amplitude scaling, frequency shaping filtering, global phase-time shifts, trace-by-trace

amplitude scaling and trace-by-trace phase-time shifts. NRMS was calculated within the

overburden and within the reservoir and for an angle range 30 − 40◦s this value was 0.149

in the overburden and 0.151 within the reservoir. The goal is to minimize this value in the

overburden to below 0.3 (as a value of 0.3 would indicate that the seismic in the Monitor 2

survey was reproduced within 30% of the seismic in the Baseline survey). The NRMS values

calculated for these surveys show the Monitor 2 survey was reproduced within 15% of the

seismic in the Baseline survey. Minimizing NRMS in the overburden ideally maximizes real

changes within the reservoir (Copley, 2018).
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As the inversion outputs relative acoustic impedance, the extraction of absolute changes

within the reservoir is not possible. The extraction of the relative changes is more appropri-

ate. A difference volume was created by subtracting the Baseline relative impedance volume

from the Monitor 2 relative impedance volume. In Figure 5.31a, I extracted the root-mean-

square (RMS) values from the Top Niobrara to the Greenhorn Lincoln Limestone formation

to observe relative changes within the entire reservoir. In Figure 5.31b I smoothed the RMS

surface to observe general trends.

The theory behind doing a time-lapse analysis of the inversion is to identify which portions

of the reservoir have been effectively drained. Figure 5.32 displays the RMS surface with

the horizontal wells color coded according to how well they produce (green = best producer,

yellow = moderate producer, red = poor producer), below is the relative well placement

in cross-sectional view. The largest changes observed from the inversion are the western

portion of the survey and north of the central graben. Although it is difficult to discern, it

is observed that the best producers do correlate with the largest changes from Baseline to

Monitor 2.

In Figure 5.33, I have overlain the microseismic events on the RMS surface. In general,

there are significantly more events in the north-west portion of this section. Those events

align with the larger differences observed on the RMS surface, potentially indicating that

the rock that has been affected by hydraulic fracturing (i.e. the microseismic events) has

produced more adequately. When I overlay the hydraulic fracture conductivity established

from the 3D hydraulic fracture modeling (Alfataierge, 2017), it appears that the larger rela-

tive impedance changes correlate to the more effectively stimulated intervals. The effective

fracture length corresponds to the changes within the reservoir. The larger hydraulic fracture

conductivity values are color-coded purple. The areas with the highest hydraulic fracture

conductivity are primarily North of the central graben and secondarily in the West.

In Figure 5.35 the lithology that the horizontal wells have intersected are overlain on

the RMS surface. When analyzing the lithology with the reservoir changes, it is observed

139



that the larger 4-D seismic changes generally coincide in locations where the wells intersect

the chalky intervals. It is also observed that there are larger changes to the reservoir on the

western portion of the survey and north of the central graben. These larger changes correlate

to areas where the reservoir was effectively stimulated and where the wells landed within

chalky intervals. Figure 5.36 displays the 4-D seismic changes with both the intersecting

lithologies and the microseismic events. The larger 4-D changes are observed in the areas

with heavier microseismic activity and chalky lithologies.

Figure 5.37 compares the relative impedance changes from ThinMan with a previous

inversion performed in HampsonRussell. The previous inversion contributed to the theory

that the reservoir is being effectively drained in the West. Overall, these results exhibit the

same changes within the reservoir. The main difference is that the older inversion displays

reservoir changes south of the central graben, whereas the ThinMan results do not.

Figure 5.38 shows the updated 4-D inversion from HampsonRussell of λρ (bottom) and

the relative impedance changes from ThinMan (top). The updated HampsonRussell inversion

shows the largest 4-D changes in the North-West corner of the Wishbone section. The area

with the highest change is outlined with a dotted black line and overlain on the relative

impedance changes from ThinMan. Both inversions agree that the largest changes to the

reservoir are observed in the North-West. Both updated inversions, microseismic, lithology

and fracture conductivity all agree that the largest changes to the entire reservoir are observed

in the North-West portion of the Wishbone section. The wells within this area are spaced

closer together contain a zipper fracture and were treated with more hydraulic fracture fluid

and proppant. This integrated analysis refines the initial theory of where the reservoir is

experiencing the most change and where it is effectively producing from. From this analysis,

I believe the largest changes are experienced in the North-Western portion of the Wishbone

section.

One of the benefits of the ThinMan inversion is that the results have higher vertical

resolution than conventional inversions. To observe the changes to each chalk bench in the
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Niobrara and the Codell Formation, RMS values from smaller intervals were extracted from

the difference volume (Figures 5.39-5.43). The red dotted line overlain on the wells within

each map indicate which wells intersect the interval extracted from. The warm colors on the

map are the areas with the highest relative changes and the seismic section on the left shows

the well tops on the left and the seismic horizons on the right. The yellow horizontal lines

overlain on the seismic section indicate what interval the RMS slices was calculated from.

Figure 5.39 is the RMS map from the Sharon Springs to the top Niobrara reflector. The well

farthest to the West intersects the B chalk that is included within this extraction. This slices

shows the largest changes to the reservoir on the Western portion of the Wishbone section.

Figure 5.40 shows the RMS map from the top Niobrara to the middle Niobrara reflector that

includes the B and C chalks. This interval includes all 7 Niobrara wells that have tighter

spacing to the West (600 ft) and sparer to the East (900-1200 ft). The 4-D seismic response

observes changes all across the Wishbone section. Figure 5.41 is extracted from the bottom

Niobrara to the Codell reflector and includes all four Codell wells. The largest changes to

the reservoir are observed to the North-West where the Codell wells are present. Figure

5.42 displays the 4-D seismic response from the Sharon Springs to the Codell. Similar to

the interval containing all 7 Niobrara wells, the 4-D response is observed throughout the

entirety of the section, although there is a high concentration of large changes in the North-

West. To include all changes, Figure 5.43 was extracted from the Sharon Springs to the

Greenhorn Lincoln Limestone interval (like Figure 5.31). As we previously saw, the largest

overall change to the reservoir is observed in the North-West. When extracting over the

largest interval (Figure 5.43, Sharron Springs to Greenhorn Lincoln Lime) the contribution

from the Codell wells is entirely incorporated.
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Figure 5.30: Comparison between simulated gas saturation distribution (a) and surface mi-
croseismic events (b). Higher gas saturation (yellow rectangles) correlates with microseismic
clusters (Modified from Ning, 2017).
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Figure 5.31: Extracted root-mean-square (RMS) values from the Top Niobrara to the Green-
horn Lincoln Limestone formation to observe relative changes within the reservoir (a).
Smoothed surface (b). The 11 horizontal wells are shown with the black lines trending
North-South.
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Figure 5.32: Smoothed RMS surface (top). Cross section schematic displaying the general
location in depth of the horizontal wells. The horizontal wells are overlain on the RMS
surface colored green = good producer, yellow = moderate producer, red = poor producer.
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Figure 5.33: Smoothed RMS surface (top). Cross section schematic displaying the general
location in depth of the horizontal wells. The horizontal wells are overlain on the RMS
surface are the microseismic events. The trend in the microseismic events correlate with the
larger changes observed on the time-lapse seismic.
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Figure 5.34: Smoothed RMS surface (top). Cross section schematic displaying the general
location in depth of the horizontal wells. The hydraulic fracture conductivity is overlain
on the RMS surface. There is a strong correlation with high fracture conductivity and the
larger changes observed on the time-lapse seismic.
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Figure 5.35: Smoothed RMS surface (top). Cross section schematic displaying the general
location in depth of the horizontal wells. The lithologies that the horizontal wells intersect
are overlain on the RMS surface. The areas where the wells intersect the chalk benches
correlate to the larger changes observed on the time-lapse seismic.
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Figure 5.36: Smoothed RMS surface (top). Cross section schematic displaying the general
location in depth of the horizontal wells. The lithologies that the horizontal wells intersect
are overlain on the RMS surface and the microseismic evetns. The areas where the wells
intersect the chalk benches and have higher microseismic density correlate to the larger
changes observed on the time-lapse seismic.
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Figure 5.37: Smoothed RMS surface established from the ThinMan inversion (top). Previous
time-lapse inversion relating to production showing changes to the reservoir. Both maps are
extracted over the same intervals. These inversions show similar trends North of the central
graben but contain differences South of the Graben. (Modified from Utley, 2017).
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Figure 5.38: Smoothed RMS surface established from the ThinMan inversion (top). Updated
time-lapse inversion relating to production showing changes to the reservoir. Different from
the previous time-lapse results, both updated time-lapse results show the largest changes
to the reservoir within the North-Western portion of the Wishbone section. (Modified from
Copley, 2018).
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Figure 5.39: Smoothed RMS surface established from the ThinMan inversion extracted from
the Sharron Springs interval to the Top Niobrara reflector. This extraction includes the B
chalk interval. The red dotted line represents the well that intersects this formation.

Figure 5.40: Smoothed RMS surface established from the ThinMan inversion extracted from
the Top Niobrara reflector to the Middle Niobrara reflector. This extraction includes the
B and C chalk intervals. The red dotted lines represent the wells that intersects these
formations.

151



Figure 5.41: Smoothed RMS surface established from the ThinMan inversion extracted from
the Lower Niobrara reflector to the Codell reflector. This extraction includes the Codell
Formation. The red dotted lines represent the wells that intersects this formation.

Figure 5.42: Smoothed RMS surface established from the ThinMan inversion extracted from
the Sharron Springs reflector to the Codell reflector. This extraction includes the B chalk,
C chalk and Codell Formation. The red dotted lines represent the wells that intersects these
formations. Note this extraction depth interval includes all 11 horizonal wells.
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Figure 5.43: Smoothed RMS surface established from the ThinMan inversion extracted from
the Sharron Springs reflector to the Greenhorn Lincoln Limestone reflector. This extraction
includes the B chalk, C chalk and Codell Formation. The red dotted lines represent the wells
that intersects these formations. Note this extraction depth interval includes all 11 horizonal
wells.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Horizontal-Receiver Azimuth Estimation

The process that lead to the discovery of the cross-component leakage was viewing of

prestack COCA gathers. Analysis of the shear components during processing is usually

conducted with LAS and was not recognized during processing. The use of the COCA

gathers to recognize the data issue was essential. The cross component leakage was initially

identified on the pure shear COCA gathers and it was determined that there was an issue

with the horizontal sources and/or receivers. Analysis of the C-wave data confirmed that it

was a receiver-side issue, errors in the azimuth orientation of H1 during data acquisition.

Multicomponent prestack synthetic modeling verified my hypothesis. Critical steps in

this analysis were the use of S-wave and C-wave prestack COCA gathers, and analyzing

COCA gathers in overburden as well as in the Niobrara target interval. Conventionally,

multicomponent data is analyzed in LAS during processing. In this case, LAS would not

highlight the signal leakage. Sorting the data into COCA gathers was essential and key to

the signal leakage identification.

The P-wave first-arrival method was initially used and detected the global H1 azimuth

error for Monitor 1. This global error is attributed to H1 oriented to magnetic North. The

large histogram spread suggested that the local variations in the H1 estimates were possibly

not reliable. As the P-wave first-arrival method does not handle near surface complexities

well, the C-wave reflection method was evaluated. Histograms from this method were more

refined (the spread of the histogram decreased), and the local variations were deemed trust-

worthy. The C-wave reflection method can handle near surface complexities and performs

well in the presence or absence of anisotropy. Both methods indicated the global orientation

of the H1 azimuths for each survey.
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H1 azimuth estimates obtained from the C-wave reflection method were used to properly

rotate the C-wave and S-wave data to radial-transverse coordinates. These data are now

better suited for further analysis, and to potentially expose/detect that subtle fracture-

related seismic signal produced by the hydraulic fracturing within the Niobrara reservoir

interval. Also, with the radial and transverse components rotated incorrectly, preprocessing

parameters derived from the radial component (and applied to transverse) will be in error

(surface consistent amplitude compensations, surface consistent deconvolution, etc.). These

errors impact amplitude work, in addition to shear-wave splitting.

6.2 Horizontal-Receiver Azimuth Estimation Recommendations

I recommend using the P-wave first arrival method for a brute rotation into radial-

transverse coordinates early in processing. Once the data has been cleaned and refined, the

C-wave reflection method should be used for refinements in the rotation. If the data are going

to be used for an assessment of shear wave splitting, these rotations need to be analyzed and

quality controlled, since poor rotations may lead to false indicators of shear-wave splitting.

When the magnitude of shear-wave splitting delay is small, the C-wave and S-wave crossterm

reflection signal is weak. Improper rotation to radial-transverse coordinates may mask this

weak signal what we wish to detect, expose, and invert.

6.3 Sparse-Layer Reflectivity Inversion

The conventional method of performing a post stack inversion involves the input of a

background P-impedance model. The sparse-layer reflectivity inversion is significantly more

robust (as it does not require a a background model), relatively simple to use, while out-

putting results that are just as good, if not superior to the model-based inversion results.

Performing the inversion on the Wattenberg synthetic volume provided confidence in the

process as the results have high resolution and do a great job at accurately modeling the

subsurface.
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For a comparison of ThinMan and Hampson-Russell’s post stack inversion (STRATA)

both the wedge model and the Wattenberg synthetic were used. When comparing the actual

impedance results for the Wattenberg results with the input relative impedance volume, the

ThinMan results were preferred. Although the results from the HRS inversion match the

data well, this result is very smooth and is lower resolution than the ThinMan results.

To gain confidence in the ThinMan inversion of the field data, a handful of quality control

steps were necessary:

• Comparison of the field data results with the Wattenberg synthetic results

• Convolving the output reflection coefficients with 30hz and 50hz Ricker wavelets and

performing well ties

• Using the relative impedance values from each well and comparing those with the

inverted relative impedance from the field data

Through the quality control process, it was determined that the B and C chalk benches of

the Niobrara were resolved. Once confidence was established, the field data results from the

Baseline survey (static conditions) were integrated and interpreted within a regional sequence

stratigraphic framework to determine if there is a relationship between relative impedance

and thickness. The inverted relative impedance volume was flattened on the Top Niobrara

and the Graneros for stratal slicing. Stratal slices from the B chalk, C chalk, D interval and

Codell were compared with the regional isochron maps. The relative impedance over the B

chalk decreases to the south, a similar trend is observed on the isochron map. From the C

chalk isochron, it is observed that this interval has a constant thickness over our study area.

The relative impedance of this interval also remains relatively constant. From the isochron

maps, both the B and C chalk benches are around 30-40ft. The measured thickness of those

benches from the inverted relative impedance are also 30-40 ft. The D interval appears to

thicken to South of our study area. Its relative impedance decreases in the same direction.

It is observed that the relative impedance trends do correspond to the thicknesses from the
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isochron maps, although more work is needed to confirm this as a correlation. Overall, it

should be noted that the seismic volume covers a total of 4 square miles, so it is difficult to

determine lateral variations in geology in such a limited area.

The dynamic inversion results show strong impedance changes in the North-West corner

of the Wishbone section. This anomaly correlates to heavy microseismic activity, high hy-

draulic fracture conductivity established from reservoir modeling and well landing positions

relative to chalk benches. The results from the ThinMan inversion are a decent match to

the previously established time-lapse seismic response to production. These results match

to the North of the central graben, but disagree in the South.

6.4 Thin-Bed Reflectivity Inversion Recommendations

To potentially match the inverted impedance response to reservoir sweet spots, the results

from Mabrey’s (2016) RQI should overlain on the inversion. If a relation between relative

impedance values with high quality rock could be established, more efficient completion

designs could be from the seismic. In addition, the inversion should be run on every angle

stack. It has been shown that we can resolve the chalk benches, it would be even more

powerful if we could determine the AVO response of the sweet spots. To verify the 4-D

seismic response and it’s correlation to production, the 4-D response at each horizontal well

should be extracted and compared to the production from each well. In addition, the work

completed by Copley (2018) determined that the largest 4-D changes were observed on the

40 − 50◦ angles. I am recommending to do a similar 4-D ThinMan inversion of this angle

range for another pseudo-AVA analysis.
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