

RCP PHASE XVIII Proposal: Chalk Bluff Development Optimization Project Northern DJ Basin

Tanya Inks (geophysics), Ben Burke (geology), Steve Harpham (engineering)

Program would allow for various research projects designed to improve multi-faceted

approaches to field development, and would include:

- Understand drivers of Vertical and horizontal subsurface connectivity at several scales
- Characterize geologic heterogeneity and influence of natural & induced fractures on completions and production
- Utilize integrated data to determine best well spacing both laterally and vertically
- Understand legacy development effects & how to mitigate them
- Determine Optimize Frac design including fluid volumes, type, sand loading, stage & cluster spacing
- Understand frac energy & and its relationship to structure (e.g., faults & fractures)
- Calculate stimulated reservoir rock volumes
- Identify options to minimize interwell communication
- Identify best practices completion strategies such as zipper fracing, bashing, stress shadowing

Project Location

Chalk Bluff - Niobrara Formation in the Northern DJ Basin, Colorado

- Seismic and surface microseismic
- Fiber: DAS and DTS technologies
- Pressure data
- Geochemistry data
- Log suites

- Project work flow Phases I and II
 - Drilling of 22 horizontal wells, long reach (10000' laterals) underway.
 - Image log acquisition on fiber wells (two of three with CMI, Weatherford Micro-Imager)
 - Completed 4/8/2019
 - Fiber Installation Complete (cemented fiber, two single and two multimode fibers in each of three wells.)
 - Interrogators (2 DTS and 2 DAS) installation complete by 5/25/2019, currently have three of four on-line.
 - Pilot Well Acquired Quad Combo, Sonic Scanner (oriented), 12/2018
 - Geochemistry Cuttings, Mudgas collection, XRD and XRF complete.
 - Surface microseismic monitoring, tiltmeter monitoring and processing, and fiber microseismic monitoring underway, complete approximately 6/1/2019.
 - Fiber well completions 5/2019
 - All microseismic patches in place and recording. First half of zipper group one monitored in real time for QC purposes.
 - All tiltmeters in place and recording.

• Phase III:

- Flowback and Production monitoring beginning 4/15/19 (first zipper group)
- Fiber monitoring & geochemical sampling of produced fluids monthly for 1st year after completions with quarterly reports – ongoing beginning 6/2019
- Continuing integration of field data revisions in drilling and completions parameters based on results to optimize field development.
- Student Engagement Fall Term Colorado School of Mines RCP
 - Envision multi-disciplinary team, engage all disciplines at the beginning of the project
 - Geophysics
 - Petroleum Engineering
 - Geology / Geochemistry

- Data Integration and cutting-edge research through the Reservoir Characterization Project
 - Requires participation across Geophysical, Geological and Engineering disciplines
 - Opportunities for student interaction with HighPoint Mentors
 - Tanya Inks (geophysics), <u>tinks@hpres.com</u>, cell (303-809-5520)
 - Ben Burke (geology), <u>bburke@hpres.com</u>, cell (860-655-6837)
 - Sean Stewart (primary engineering advisor), <u>sstewart@hpres.com</u>, 303-312-8582
 - Stephan Harpham, <u>sharpham@hpres.com</u>, 303-312-8544
 - Billy Sprague, <u>bsprague@hpres.com</u>, 303-312-8149

- Data that we would make available for RCP study:
- Geophysical Data:
 - Excellent quality seismic data acquired in 2009, and reprocessed in 2017. Data includes processed gathers, inversion volumes (utilizing pilot well sonic scanner and other full-wave-form sonics in larger project) and velocity anisotropy volumes. The proposed RCP project would include at least four square miles of full-fold PSTM data.
 - Surface microseismic Currently being acquired in 14 to 18 wells (of 22 total wells) in 4 DSU's. Surface
 microseismic stations have been placed in patches over 20 sections.
 - Fiber has been permanently cemented in two Niobrara and one Codell well for DTS and DAS acquisition including DAS microseismic. Fiber VSP time-lapse is also being considered for evaluation of frac height and evaluation of Codell/Niobrara parent-child relationships.
 - Tiltmeter data is being acquired during the completions of all 22 wells in the study area.

Geological Data

- Full Quad Combo log suite in pilot well near SHL of western-most fiber well is within the full-fold seismic area, and includes sonic scanner data.
- Geochemical data includes XRD, XRF, cuttings gas and mud gas data and oil and water data collected monthly after completions.
- Two Weatherford CMR (micro-resistivity image log) in one Niobrara and one Codell fiber well.
- LWD Gamma

HPRES.COM

 Although there is no core in the study area, core (and corresponding FMI and logs) are potentially available from nearby wells in Hereford field.

Engineering Data

- DTS data in fiber wells look at variability in production relative to legacy wells, faults and other identified rock property variations.
- Pressure Analysis (Pressure Gradient one fiber well, ISIP)
- Completion/Treatment data including well spacing and other completion variables in 22 2019 extra-long-reach horizontal wells.
- Tracer Data (possibly, future)

Chalk Bluff Niobrara and Codell Development Optimization Project Scope (Page 1)

- Specific Goals:
 - Understand drivers and processes of vertical & horizontal connectivity. Tools Include:
 - Microseismic vertical and horizontal spread of events relative to:
 - legacy wells (stress shadows)
 - Integration with Faults and Fracture systems identified on seismic and calculated seismic attributes (Fault Likelihood, Inversion Attributes)
 - Possible Long-distance stress or fluid pathways
 - Tiltmeter integrated with microseismic, compare dilation versus propped SRV?
 - Seismic Inversion Attributes (Prestack SEI)
 - Legacy wells (parent child relationships)
 - Changes is stratigraphy and rock mechanics

Hereford Niobrara and Codell Development Optimization Project Scope (Page 2)

- Understand legacy development effects & how to mitigate them. Tools Include:
 - DTS Look at variability in production relative to position near legacy wells
 - Pressure analysis (pressure gradient, ISIP)
 - Poisson's Ratio from Inversion and ISIP to look at reservoir pressure variations
 - Microseismic interpreted frac height and width
 - Tiltmeter identification of depleted zones?
- Determine stage & cluster spacing that maximizes DSU economics
 - DTS
 - ISIP
 - Surface Microseismic and DAS microseismic frac height, width, estimate SRV
- Examine how fracs respond to subsurface structural heterogeneity (e.g., faults & fractures)
 - how to maximize Stimulated Rock Volume while minimizing bashing
 - Use microseismic to look at efficacy of seals, vertical and lateral effectiveness (and variations)

- Comparison of surface microseismic and DAS microseismic
- Integration of seismic geomechanical data with DAS/DTS data
- Fracture modeling and/or Geocellular modeling
- Stress Analysis stress shadowing and affects on well and cluster spacing
- Vertical and horizontal communication between wells and reservoirs