

RESERVOIR CHARACTERIZATION **PROJECT**

Laboratory Assessment of Improved Oil Production from Unconventional Shale Reservoirs

Asm Kamruzzaman PhD Student Petroleum Engineering Department

Outline

- **a** Background and scope of study
- **o Completed** EOR studies
 - Technical approach (i.e. experimental plan)
 - Laboratory procedures
 - Summary results
- Planned EOR research
 - Technical approach
 - Laboratory design
 - Laboratory procedures

Background and Scope of Study

- Shale EOR has proven effective with strong results;¹ however, our understanding of EOR mechanisms in unconventional shale reservoirs is still limited.²
- Several field tests and numerical modeling have indicated that gas injection is the most viable EOR method to produce more oil from liquid-rich tight shale reservoirs; but there are inconsistencies between laboratory investigations and field trials.²
- The goal of our ongoing research at RCP is to understand and quantify the fundamentals of gas injection EOR in shale reservoirs via laboratory experiments.
- Our research will be strengthened by collaborating with the Lawrence Berkeley National Laboratory (LBNL) which has appropriate laboratory facilities complementing our research capabilities.
- 1. Trent Jacobs, Journal of Petroleum Technology, May 2019
- 2. Ganesh Thakur, Journal of Petroleum Technology, September 2019

EOR Study at the Berkeley Lab

- Below are the details of the EOR research¹ conducted at the Berkeley Lab in summer 2019:
 - Investigated several EOR production strategies using fine scale, high porosity, ceramic and Teflon synthetic cores. The cores were used to conduct huff-and-puff EOR.
 - Tests were conducted on four different samples with heterogeneous porosity, pore structure, and wettability. Pore size varied from micropores to nanopores. Ceramic samples were waterwet and Teflon oil-wet.
 - X-ray CT was conducted during core flooding of a fractured ceramic sample.
 - The process variables included gas composition, system pressure (1500 psia) and temperature (150°F), soak and drainage time.
- 1. DOE Shale Project ESD00008115, Energy Geosciences Division, LBNL

EOR Lab Tests Conducted

Method	EOR agent	Porous media	Note
Scoping study (sensitivity and reproducibility)	Supercritical (sc)CO ₂	Crushed shale	Niobrara outcrop
	H ₂ O	Ceramic disk	Weakly anisotropic media
Huff-n-puff (single component gases)	He (helium)	Ceramic disks	Weakly anisotropic media
	N ₂	Ceramic disks	Weakly anisotropic media
	CH ₄	Ceramic disks	Weakly anisotropic media
	CH ₄ [with (sc)CO ₂]	Ceramic disks	Weakly anisotropic media
Huff-n-puff (gas mixtures)	CH ₄ - CO ₂ (changing composition)	Ceramic disks	Weakly anisotropic media
	CH ₄ - CO ₂ (changing composition)	Ceramic disks + Teflon	Anisotropic media

Synthetic Porous Media

200 µm

10 µm

Synthetic Porous Media (Composite Clusters)

~ 150 nm

~ 8 µD

~ 6 µD

70% inorganic mineral - 30% kerogen

70%-30% water-oil wet

Anisotropic Media 3

32%

 105 cm^3

Scoping Studies

Effect of (sc)CO₂ (crushed shale)

Schematic of experimental apparatus

Crushed Niobrara shale

- (sc)CO₂ was injected into crushed Niobrara shale at 140°F and 1300 psia.
- Very small mass of oil was recovered.
- Or Poorly characterized sample; not ideal testing method.

Effect of water displacement (ceramic disk)

Oil droplets on ceramic disk

- Oil was displaced from ceramic discs by water at room temperature and pressure.
- Oil spontaneously effused from the ceramic sample as water was imbibed.
- Average oil recovery was 88% for a dry sample and 66% for a water-wet sample.

Huff-n-Puff EOR Lab Setup (Berkeley Lab)

1 Sample preconditioning with water vapor

2 Sample pressure-saturate with dodecane¹ (1500 psia)

3 Gas-driven drainage of excess dodecane (1500 psia)

4 Soak with gas/gas-mixture of choice (140°F, 1500 psia)

5 Produce dodecane by depress. (1500 psia - vent)

¹n-Dodecane ($C_{12}H_{26}$) Liquid, intermediate alkane hydrocarbon Boiling point = 420°F

Matrix-fracture / fracture-face system

Primary Oil Recovery from Composite Clusters

Weakly Anisotropic Media

Ceramic 100% water-wetting **Porosity** ~ 45% Pore size ~ 2.5µm

Anisotropic Media 1

Ceramic/HDPE/PTFE 70%:30% water-oil wetting **Porosity** ~ 41% Pore size > $2.5\mu m$

Anisotropic Media 2

Ceramic/HDPE/PTFE 70%:30% water-oil wetting Porosity ~ 31% Pore size ~ 500nm

Ceramic/HDPE/PTFE 70%:30% water-oil wetting Pore size ~ 150nm

Oil recovery amount

Key observations:

- Porous media mineralogy and wettability exhibited large effect on oil production.
- **Smaller poresize** samples produced more oil than the larger poresize samples.
- Sample total porosity less *intensely* affecting the oil production.

Key observations:

- Helium performed poorly; appeared not to be promising, and eliminated from further consideration.
- Both N₂ and CH₄ outperformed He.

Key observations:

- (sc)CO₂ significantly increased oil recovery.
- Gas mixtures with higher CO₂ concentrations increased oil recovery.

Key observation: 150-500 nanometer poresize samples produced more oil compared to the 2.5 micrometer samples.

Key observation: gas mixtures with **higher CO₂ concentrations** increased oil recovery, and have potential for further study and development. 12

Planned EOR Research on Shale Cores (Berkeley Lab)

- The earlier EOR tests in composite synthetic cores at LBNL have established that N₂, CH₄ and CO₂ have potential for EOR applications.
- Require additional tests to fill in data-gap and confirm results.

In the new tests I will conduct EOR experiments using wet gas and CO₂ injection in shale cores at expected reservoir pressure and temperature.

Planned EOR Study – Phase I Lab Experiments

- Huff-n-puff (fracture-face) EOR experiments in shale cores:
 - 1) Using a mixture of C_1 - C_5 to displace n- C_{12} in 2 x 7-inch <u>unfractured long</u> <u>cores</u> at 200°F and 2000 to 2500 psia.
 - 2) Repeating same experiment in <u>fractured long cores</u>.
 - 3) Repeat above experiments using CO_2 .

Planned EOR Study – Phase II Lab Experiments

- Huff-n-puff (core flooding) EOR experiments in shale cores:
 - Conducting similar experiments as in Phase I with the exception of using recombined reservoir fluids (real field produced oil + gas) at 240°F and 5000 psia.
 - Measure acoustic (P and S) velocities during core flooding experiments (<u>w/ Prof. Manika Prasad</u> from Geophysics Dept, CSM).
 - Conduct reservoir simulation to analyze the laboratory PVT and EOR results.

Experimental apparatus for Phase II

Planned EOR Study – Phase II Lab Procedures

