

Fiber Optics Research Program

Gary Binder, Aleksei Titov, Kagan Kutun

FORP People:

Dr. Ali Tura – GP faculty, RCP director Dr. Jennifer Miskimins – PE faculty, FAST director Dr. Ge Jin – GP faculty, RCP co-director Dr. Yilin Fan – PE faculty, flow expert

Dr. Gary Binder – GP Post-doc

Aleksei Titov – GP Ph.D. student Kagan Kutun – PE Ph.D. student Owen Huff – GP M.S. student Dwaipayan Chakraborty – GP M.S. student

Associated members: Lee Fronapfel – ME faculty, Edgar Research Mine Manager Dr. Alfred Eustes – PE faculty, drivier optics Research Program

Fiber Optics for Unconventionals

ARTH 🌢 ENERGY 🌢 ENVIRONMENT

Fiber Optic Sensing Introduction

Modified from Frauscher, Optasense, Silixa, Smart Fibres

Fiber Optic Sensing Techniques

DAS - Distributed Acoustic Sensing

• Rayleigh phase change \rightarrow strain

DSS - Distributed Strain Sensing

• Brillouin frequency shift \rightarrow strain

DTS - Distributed Temperature Sensing

 Raman Anti-Stokes Peak Intensity → temperature

Fiber Optic Cable Deployment

 $\mathbf{\Lambda}$

Fiber Optic Research Program Overview

RCP Field Projects with Fiber Optic Data

Chalk Bluff, HighPoint

- Completion and production monitoring with DAS/DTS
- Cross-well low-frequency DAS
- Interstage DAS VSP
- DAS microseismic

Midland Basin, Apache Interstage DAS VSP – engineered

fiber

Eagle Ford, Devon/Penn Virginia

- DAS VSP
- DAS microseismic
- Completion and production monitoring with DAS/DTS

Wolfcamp, Apache

Interstage DAS VSP

Laboratory Projects

High Bay Flow Loop

- 30 ft vertical flow loop on Mines campus
- Operating now
- Goals:
 - Discriminate multi-phase flow regimes
 - Flow velocity with thermal slugs
 - Detect liquid loading

Edgar Research Mine Flow Loop

- 130 ft horizontal borehole and flow loop underground
- Under construction
- Goals:
 - Multi-phase flow
 - Production logging
 - Injection allocation
 - Low-frequency strain with pressure cells
 - Testing fiber optic cable coupling methods

Fiber Optics for Unconventionals

Apache Interstage DAS VSP

Apache Interstage DAS VSP

By fitting time shifts to a model, height, fracture compliance, and decay time can be found

Model

Scattered Waves with Engineered Fiber

- Scattered waves are another path to height, fracture compliance, width, and decay time
- Weakly seen for some stages in first Apache dataset
- New survey with engineered fiber has improved SNR by a factor of ~100
- Scattered waves visible after almost every stage

Fiber Optics for Unconventionals

ARTH 🌢 ENERGY 🌢 ENVIRONMENT

Eagle Ford DAS Microseismic

Surface/DAS Joint Inversion

 Combine strengths of surface geophones and DAS for both accurate microseismic locations and source mechanisms

FNFRGY 🌢

16

Fiber Optics for Unconventionals

ARTH 🌢 ENERGY 🌢 ENVIRONMENT

Cross-well Strain

- Low-frequency (<0.5 Hz) DAS data shows slow strain changes
 - Frac hits
 - Stress shadowing
 - Leak-off and fracture closure

18

Chalk Bluff: Potential LF Signals

 LF DAS signals are observable for hundreds of stages in the Chalk Bluff project

Observable frac hits in Fiber Well B

Fiber Optics for Unconventionals

Injection Allocation

 Allocate fluid and proppant to each perf cluster using acoustic noise in DAS

Part

ted %

ŝ

τ

Fiber Optics for Unconventionals

Production Logging

• Thermal slugs can be tracked to estimate flow velocity along well

ENERGY 🌢 ENVIRONMENT

OLOBADOSC

 Speed of sound is sensitive to water/oil/gas mixture

Haldun Unalmis, O., 2015, Proc. of Mtgs. on Acoustics, **23**, 045003.

RCP FO Lab Equipment

- OptaSense: ODH-3.1 DAS interrogator
- Halliburton: SensorTran DTS
 interrogator
- AFL: fusion splicer/cleaver
- Pressure/temperature/flow sensors for calibration
- Compressed air injection for two-phase flow

RCP FO Lab Research

- Quantitative understanding of:
 - Single-phase and multi-phase flow
 - Flow Velocity; Flow Rate; Fluid Phase; Liquid Holdup; Flow Pattern
 - Acoustic and thermal energy propagation and attenuation
- Testing of installation methods, types of optical fiber, and interrogator settings to optimize measurements
- Low-frequency DAS measurements
- Development of physics-based modeling approaches

Flow Characterization Methods

Thermal

- Intensity-based Eddy tracking
- Speed of sound Slugging signal
- Doppler effect

Acoustic

Finfer et al., 2014; In't Panhuis et al., 2014; Naldrett et al., 2018 • Slugging signal

• Material and Thermal balance

Jin et al., 2019

High Bay Vertical Flow Loop

What fluid is flowing and how fast?

ARTH

ENERGY & ENVIRONMENT

$$c = \frac{382 + 322}{2} = 352 \text{ m/s}$$
$$U = \frac{382 - 322}{2} = 30 \text{ m/s}$$
$$U = 28 \text{ m/s measured with}$$

flow meter

-6

-8

-14

Dower Spectrum (dB)

Two-Phase Flow and Onset of Liquid Loading

- Liquid loading detection will help to:
 - Put artificial lift
 - Understand the performance of artificial lift
 - Facilitate operational decision making
- Our objectives with vertical flow loop:
 - Characterize multiphase flow for different flow patterns with DAS
 - Detect flow pattern transition

Flow Patterns

ENVIRONMENT

ENERGY 🌢

Two-Phase Flow Observations

RGY

• We observe two modes

 $c_1 = 350 \ m/s$

Two-Phase Flow Observations

- We observe two modes
- The intensity of the modes varies with the flow pattern
- Normalized intensity can be used to distinguish between flow patterns

 $c_1 = 350 \ m/s$ $c_2 = 1500 \ m/s$

Tube Wave Complexity

COLORADOSCHOOLOFMINES

Tube Wave Complexity

Dispersion diagram of longitudinal modes L and the fluid mode M1 for water-filled 2" pipe (from *Wöckel et al., 2015*)

- Different propagation modes exist in the filled-pipe system
- The modes are dispersive and change with pipe material, diameter, wall thickness, installation, and fluid properties
- To quantitatively analyze flow for lab and wellbore conditions we need to model them

Thermal Slugs Tracking with DAS (f<1 Hz)

COLORADOSCHOOLOFMINES

37

Thermal Slugs Tracking with DAS (f<1 Hz)

ENERGY 🔺

ENVIRONMENT

Thermal Slugs Tracking with DAS (f<1 Hz)

v = 0.16 m/s0.00100 0.00075 60 0.00050 50 Channel (#) 0.00025 0.00000 -0.00025 20 -0.00050 10 -0.00075-0.001000 8 Temperature (°C) 6 10:51 PM 10:53 PM 10:55 PM 10:49 PM 10:57 PM 10:59 PM

OLOBADOSC

ENERGY 🌢 ENVIRONMENT

v = 0.23 m/s0.00100 0.00075 60 0.00050 50 Channel (#) 0.00025 0.00000 30 -0.00025 20 -0.00050 10 -0.00075 -0.001008 Temperature (°C) 6

11:02 PM 11:04 PM 11:06 PM 11:08 PM 11:10 PM 11:12 PM

Relative Phase Rate

Phase Rate

Relative

Findings and Future Plans

We can:

- Determine the phase of fluid
 - water vs. air
- Estimate flow velocity
 - Doppler effect
 - Eddy tracking
 - Slugs tracking
 - Thermal slugs tracking
- Distinguish between various flow patterns

We plan:

- Model structural and fluid tube waves modes for flow loop and borehole
- Estimate the uncertainty of velocity determination
- Develop other quantitative attributes for different flow patterns

Edgar Mine Flow Loop

Edgar Mine – Introduction

- Active mine in the 1870's
- Originally leased to Mines in 1921
- More than 10,000 ft of underground drifts
- Used for teaching, research, and mine rescue training

https://mining.mines.edu/edgar-experimental-mine/

Edgar Mine – The Why

TH 🌢 ENERGY 🜢 ENVIRONMENT

Edgar Mine Flow Loop

- Larger
- Quiet / Temperature Stable
- Real Cable / Casing / Rock

Improve Understanding Fluid Physics / Geomechanics Interacting with F.O. Sensing

Completions / Production / Characterization

Edgar Mine Flow Loop Layout

NP∧

Cable Deployment

Current Status

- 3" pilot hole is completed
- 6" back-reaming is in progress
 - Bit problems encountered
- 300' of 4.5" casing ordered
- Compressor
 - Ingersoll Rand 125 psi, 688 scfm
- Pump
 - AMT Self-Priming Pump 50 GPM, 1HP, 93' head

Objectives

(Sierra et.al., 2008)

DTS Modeling

(Raterman et al. 2019)

Motivation

- Production
 - Varying formation/inflow temperature
 - Joule-Thompson effects
- Completions

OLORADOSC

- NWB Fracture Characterization
- Cluster efficiency
- Cement Integrity
- Response is a function of:
 - Cable location

RTH 🌢 ENERGY 🜢 ENVIRONMENT

 Location/magnitude/duration of heat anomaly

NWB Temperature in Relation to Fiber

Idealized fiber location Possible fiber location Error in inverted temperature Realistic fiber location

NWB Temperature in Relation to Fiber

FMINES

OLORADOSCHOO

ENERGY & ENVIRONMENT

(http://mseel.org/research/research.html)

DTS Warmback Modeling

- Simple, 1D, conduction only model
- Determine temperature response of different points within the cement
- Locate the cable, filter the location effect out
- Lay the groundwork for 2D, 3D NWB temperature inversion

(http://mseel.org/research/research.html)

ENVIRONMENT

ENERGY 🔺

• Numerically extract Green's functions for the entire system

Future Work

- Fiber location mapping (1D Model)
 - Filter the cable effect out
- Production logging modeling (Wellbore model)
- Temperature Tomography (2D and 3D models)
 - NWB Fracture density
- Cement setting and integrity
- Applications on field data

Special thanks to OptaSense, Shell, Halliburton, and AFL for supporting the Fiber Optics Research Program

Landmark

