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FORP People:
Dr. Ali Tura – GP faculty, RCP director
Dr. Jennifer Miskimins – PE faculty, FAST director
Dr. Ge Jin – GP faculty, RCP co-director
Dr. Yilin Fan – PE faculty, flow expert

Dr. Gary Binder – GP Post-doc

Aleksei Titov – GP Ph.D. student
Kagan Kutun – PE Ph.D. student
Owen Huff – GP M.S. student
Dwaipayan Chakraborty – GP M.S. student

Associated members:
Lee Fronapfel – ME faculty, 
Edgar Research Mine Manager
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Fiber Optics for Unconventionals
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Fiber Optic Sensing Introduction
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Distributed Acoustic 
Sensing (DAS)
Interrogator

Distributed Temperature 
Sensing (DTS) 
Interrogator

Modified from Frauscher, Optasense, Silixa, Smart Fibres

Distributed Strain 
Sensing (DSS)
Interrogator
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Fiber Optic Sensing Techniques
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DAS - Distributed Acoustic Sensing
• Rayleigh phase change → strain

DSS - Distributed Strain Sensing
• Brillouin frequency shift → strain

DTS - Distributed Temperature Sensing
• Raman Anti-Stokes Peak Intensity →

temperature
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FO Cables

Clamp

Casing

Cement

Formation Installation types:

• Cemented/clamped 
behind casing

• Clamped on tubing

• Free inside tubing

• Free inside casing

Tubing

Fiber Optic Cable Deployment 
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Borehole cross section:
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Fiber Optic Research Program Overview
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Application 
development

Laboratory 
testing

Field data 
analysis

F  O  R  P 
Fiber Optics Research Program

Software 
development
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RCP Field Projects with Fiber Optic Data
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Chalk Bluff, HighPoint
• Completion and production 

monitoring with DAS/DTS
• Cross-well low-frequency DAS
• Interstage DAS VSP
• DAS microseismic

Midland Basin, Apache
• Interstage DAS VSP – engineered 

fiber

Wolfcamp, Apache
• Interstage DAS VSP

Eagle Ford, Devon/Penn Virginia
• DAS VSP
• DAS microseismic
• Completion and production 

monitoring with DAS/DTS
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Laboratory Projects
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Edgar Research Mine Flow Loop
• 130 ft horizontal borehole and 

flow loop underground
• Under construction
• Goals:

• Multi-phase flow
• Production logging
• Injection allocation
• Low-frequency strain with 

pressure cells
• Testing fiber optic cable 

coupling methods

High Bay Flow Loop
• 30 ft vertical flow loop on Mines 

campus
• Operating now
• Goals:

• Discriminate multi-phase flow 
regimes

• Flow velocity with thermal 
slugs

• Detect liquid loading
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Fiber Optics for Unconventionals
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Apache Interstage DAS VSP

11

Time shifts observed 
after each stage 
moving from toe to 
heel

SN

Speedup → Slowdown

Byerley, G., et al. (2018). 

The Leading Edge,

37(11), 802–810.
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Apache Interstage DAS VSP
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Data Model

By fitting time shifts 
to a model,
height, fracture 
compliance, and 
decay time can be 
found 
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• Scattered waves are another path to 
height, fracture compliance, width, and 
decay time

• Weakly seen for some stages in first 
Apache dataset

• New survey with engineered fiber has 
improved SNR by a factor of ~100

• Scattered waves visible after almost every 
stage

SN

1.6 km

Scattered Waves with Engineered Fiber

Scattered event

Previous (stacked for 5 stages) New (single stage)

13



F  O  R  P 
Fiber Optics Research Program

Fiber Optics for Unconventionals
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Eagle Ford DAS Microseismic
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↑ Heel ↑ Toe

Well w/ fiber

Event 
location 
ambiguity

↑ Surface

P-wave arrival

S-wave arrival

Guided waves

Eagle Ford

Buda

Austin Chalk

Guided waves
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Surface/DAS Joint Inversion

Well w/ fiber Surface Geophones

Guided waves

• Combine strengths of surface 
geophones and DAS for both 
accurate microseismic locations 
and source mechanisms

Surface: DAS:
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Fiber Optics for Unconventionals
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Cross-well Strain

• Low-frequency 
(<0.5 Hz) DAS 
data shows slow 
strain changes

• Frac hits

• Stress 
shadowing

• Leak-off and 
fracture 
closure 

18

Engineered fiber

Jin, G., and B. Roy, 2017, 
Leading Edge, 36, 975–980.
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Chalk Bluff: Potential LF Signals
• LF DAS signals are observable for hundreds of stages in the Chalk Bluff 

project

19

Observable frac hits in Fiber Well A Observable frac hits in Fiber Well B

A A BB
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Fiber Optics for Unconventionals
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Injection Allocation

• Allocate fluid and proppant to 
each perf cluster using 
acoustic noise in DAS

21

Completion design 
optimization
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Fiber Optics for Unconventionals
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• Thermal slugs can be tracked to estimate 
flow velocity along well

• Speed of sound is sensitive to water/oil/gas 
mixture

23

Production Logging

Jin et al., 2019, URTeC 2019, 943.

Haldun Unalmis, O., 2015, Proc. of Mtgs. on 
Acoustics, 23, 045003.
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height

length, width, orientation, 
and density

injection 
allocation

near wellbore 
fracture density

leak-off rate

productivity

microseismic
location, 

moment tensor

Method Symbol

High-frequency DAS

DAS time-lapse VSP

Low-frequency DAS

DAS/surface array

DTS warmback

DAS/DTS
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allocation
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• OptaSense: ODH-3.1 DAS 
interrogator

• Halliburton: SensorTran DTS 
interrogator 

• AFL: fusion splicer/cleaver

• Pressure/temperature/flow 
sensors for calibration

• Compressed air injection for 
two-phase flow

26

RCP FO Lab Equipment
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RCP FO Lab Research

• Quantitative understanding of:
• Single-phase and multi-phase flow

• Flow Velocity; Flow Rate; Fluid Phase; Liquid Holdup; Flow Pattern

• Acoustic and thermal energy propagation and attenuation

• Testing of installation methods, types of optical fiber, and interrogator 
settings to optimize measurements

• Low-frequency DAS measurements

• Development of physics-based modeling approaches

27
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Acoustic

• Intensity-based

• Speed of sound  

• Doppler effect  

• Eddy tracking 

• Slugging signal

Thermal

• Slugging signal

• Material and Thermal balance

Flow Characterization Methods

28

heaterspeaker

pipe
fluid

flow

Finfer et al., 2014; In’t Panhuis et al., 2014;
Naldrett et al., 2018

Jin et al., 2019
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1” vertical pipe 
wrapped with 

fiber optic cable

29

High Bay Vertical Flow Loop
FO

Vortex 
Flow 
Meter

Control 
Valve

PT7 TT1

Building 
Compressor

7.2-m

PT6

Water Pump Magnetic 
Flow 
Meter

Water
Tank

Control 
Valve

1.75-m

PT5

PT4

PT3

PT1/TT2

PT2

Hot Water 
Injection

air line

water line
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What fluid is flowing and how fast?

Air, 30 m/s

𝑈 = 28 𝑚/𝑠 measured with 
flow meter

𝑐 =
382 + 322

2
= 352 𝑚/𝑠

𝑈 =
382 − 322

2
= 30 𝑚/𝑠
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Two-Phase Flow and Onset of Liquid Loading
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• Liquid loading detection will help to:

• Put artificial lift

• Understand the performance of 

artificial lift

• Facilitate operational decision 

making

• Our objectives with vertical flow 

loop:

• Characterize multiphase flow for 

different flow patterns with DAS

• Detect flow pattern transition

Hearn (2010)

#1 Annular   #2 Churn   #3 Slug   #4 Bubble

#2

#3

#4

P
R

O
U

C
TI

O
N

 R
A

TE

#1
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Flow Patterns

32
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Two-Phase Flow Observations

𝑐1 = 350 𝑚/𝑠

𝑐2 = 1500 𝑚/𝑠

• We observe two modes
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Two-Phase Flow Observations
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1

1.5

1

1.5

1

1.5

1

1.5

1

1.5

𝑐1 = 350 𝑚/𝑠

𝑐2 = 1500 𝑚/𝑠

• We observe two modes

• The intensity of the modes varies  
with the flow pattern

• Normalized intensity can be used 
to distinguish between flow 
patterns
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Tube Wave Complexity

35
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Single 
phase air

Slugging 
flow

Pump is working

Hot water 
injection to non-

moving water

𝑐3 = 650 𝑚/𝑠

𝑐2 = 1500 𝑚/𝑠

≈ 350 𝑚/𝑠

∞

𝑐1 = 350 𝑚/𝑠
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• Different propagation modes exist 
in the filled-pipe system

• The modes are dispersive and 
change with pipe material, 
diameter, wall thickness, 
installation, and fluid properties

• To quantitatively analyze flow for 
lab and wellbore conditions we 
need to model them

36

Tube Wave Complexity

Dispersion diagram of longitudinal modes L and the 
fluid mode M1 for water-filled 2” pipe
(from Wöckel et al., 2015)
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Thermal Slugs Tracking with DAS (f<1 Hz)
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Thermal Slugs Tracking with DAS (f<1 Hz)
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Thermal Balance

Fluid Velocity
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We can:

• Determine the phase of fluid
• water vs. air

• Estimate flow velocity 
• Doppler effect

• Eddy tracking

• Slugs tracking

• Thermal slugs tracking

• Distinguish between various flow 
patterns

We plan:

• Model structural and fluid tube 
waves modes for flow loop and 
borehole

• Estimate the uncertainty of 
velocity determination

• Develop other quantitative 
attributes for different flow 
patterns

Findings and Future Plans

40
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Edgar Mine Flow Loop

41
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Edgar Mine – Introduction 

42

 

• Active mine in the 1870’s
• Originally leased to Mines in 1921
• More than 10,000 ft of 

underground drifts
• Used for teaching, research, and 

mine rescue training

https://mining.mines.edu/edgar-experimental-mine/

https://mining.mines.edu/edgar-experimental-mine/
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Edgar Mine – The Why

43

Improve Understanding Fluid Physics / Geomechanics
Interacting with F.O. Sensing

Completions / Production / Characterization

Experimentation Data AnalysisModeling

Lab Limitations
- Scale
- Environment
- Material

Edgar Mine Flow Loop
- Larger
- Quiet / Temperature Stable
- Real Cable / Casing / Rock
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N

200 ft

Edgar Mine Flow Loop Layout
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Piping in mine drifts

Wellbore

Pump Station

Total
220 m
(720 ft)

4
0

 m
 (

1
3

0
 f

t)

#3

#2
#1

#5

#4

Pressure cell 
(Cross Well Strain)

Drilled Entry Points

(Perforation Inflow)

Controlled Explosions

(Wave Propagation)
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Flow Loop Layout
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Tank

Air

> 30 ft 30-ft

80-ft
25 ft

#
1
 (

1
7
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#2 (160-ft)
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130 ft> 35 ft

#3

Air 20-ftθ = 2°4-ft
120-ft50-ft

#5 (190-ft)

#4 (80-ft)
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θ = 0°

θ = 0°

θ = 0°

#2

#3

#1

#5

#4

Horizontal multi phase flow
Perforation inflow/outflow 

Horizontal multi phase flow
Perforation inflow/outflow 

In situ conditions
Horizontal multi phase flow
Temperature transients
Cross well strain
Perforation inflow/outflow 
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Cable Deployment 

46

AFL Cable

Clamp

Pipe

Sand
Formation

Shell 
Cable

FO Cable 
(TBD)

Shell Cable

AFL Cable
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Current Status

• 3” pilot hole is completed

• 6” back-reaming is in progress
• Bit problems encountered

• 300’ of 4.5” casing ordered

• Compressor
• Ingersoll Rand – 125 psi, 688 scfm

• Pump
• AMT Self-Priming Pump

50 GPM, 1HP, 93’ head

47
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Objectives

48

Reservoir Management  
Production Optimization

Completions 
Well Spacing

Reservoir 
Characterization

Multi Phase Flow Characterization

Perforation Inflow/Outflow Characterization

Cross well / NWB Stress-Strain

Wave Propagation /  Seismic 

Measurement Environment

Thermal

Acoustic
Generation

Propagation

Attenuation

Rate

Regime

Holdup

Field Datasets

Software 
Development
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DTS Modeling

49

(Sierra et.al., 2008) (Raterman et al. 2019)
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Motivation

• Production
• Varying formation/inflow 

temperature
• Joule-Thompson effects

• Completions
• NWB Fracture Characterization
• Cluster efficiency

• Cement Integrity

• Response is a function of:
• Cable location
• Location/magnitude/duration of heat 

anomaly

51
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NWB Temperature in Relation to Fiber

52

(Adapted from Wang, 2012)

Idealized fiber location

Possible fiber location

Error in inverted temperature

Realistic fiber location
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NWB Temperature in Relation to Fiber
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(http://mseel.org/research/research.html)

http://mseel.org/research/research.html
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DTS Warmback Modeling

• Simple, 1D, conduction only model

• Determine temperature response of different points within 
the cement

• Locate the cable, filter the location effect out

• Lay the groundwork for 2D, 3D NWB temperature inversion

54

(http://mseel.org/research/research.html)

http://mseel.org/research/research.html
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DTS Warmback Modeling (Workflow)

• 1D – Radial Conduction

55

1
p

T T
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Wellbore 
Fluid (B.C.)

Casing Steel

(0.205”)

5 grids

Cement

(0.75”)

10 grids

Formation

(300 ft)

86 grids
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DTS Warmback Modeling (Workflow)
• Numerically extract Green’s functions for the entire system

56
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DTS Warmback Modeling (Workflow)
• Model results can be replicated via convolution

• Numerically much faster

57

M

G

Wellbore Cable 
Location

100 seconds

0.01 seconds
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DTS Warmback Modeling (Workflow)

• Inversion for the wellbore temperature

58

Cable Location

(G)-1

Wellbore
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Future Work

• Fiber location mapping (1D Model)
• Filter the cable effect out

• Production logging modeling (Wellbore model)

• Temperature Tomography (2D and 3D models)
• NWB Fracture density

• Cement setting and integrity

• Applications on field data

59
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