

RESERVOIR CHARACTERIZATION **PROJECT**

Raudhatain Field Project, North Kuwait

Nadima Dwihusna and Liwei Cheng November 14th, 2019

RESERVOIR CHARACTERIZATION PROJECT

Rock Physics Analysis and Post Stack Inversion in Raudhatain Field, North Kuwait

*Liwei Cheng November 14*th, 2019

Outline

- Introduction of Raudhatain field
- Overburden velocity and ray tracing model
- OR Rock physics analysis
- Ost stack seismic inversion

Raudhatain Field

North Kuwait Jurassic Gas Fields (1800 km²)

(Top of Najman time structure map, modified from Al-Eidan, 2010) 4

Marrat Formation

- Deposited on carbonate-evaporite platform during Early Jurassic age
- Total thickness is up to 2,000 ft
- Middle Marrat (MMR) is the most prolific unit and consists of a sequence of limestones, frequently with anhydrite, dolomite and rare shale
- Total porosity is up to 20%
- Production from 2,500 to 5,000 bopd and from 6^{16000 ft} to 20 MMscfd per well

Data

Reservoir Characterization Seismic Data Rock Physics Fracture Reservoir Well Log Data Characterization **Properties Integrated Static Model**

Seismic-well Tie at Well B

Correlation coefficient (from Najmah Kerogen to TD) = 0.686

Amplitude Issue Under Salt/Anhydrite

Elastic Reflectivity Model and Field Data

Primaries + multiples + converted waves

High Velocity Overburden Layer

2D Velocity Model

2D Velocity Ray Tracing Model

Elastic Reflectivity Model and Field Data

Primaries + multiples + converted waves

Reservoir Characterization

Multi-mineral Analysis

Petrophysical inversion from GR, RHOB, DTC, NPHI, resistivity logs

Well A

Acoustic Impedance vs. Total Porosity

Middle Marrat only; 11 wells combined

Compressional vs. Shear Velocity

Middle Marrat only; 11 wells combined

Acoustic Impedance vs. Poisson's Ratio

Middle Marrat only; 11 wells combined

Acoustic Impedance vs. Density

Middle Marrat only; 11 wells combined

Reservoir Characterization Seismic Data Rock Physics Fracture Reservoir Well Log Data Characterization **Properties Integrated Static Model**

Wavelet

Statistical wavelet extracted from 2.3 – 2.6 s; phase rotated 180°

Inversion Analysis

Inverted Prediction and Field Data Comparison

Summary

- Based on the 2D ray tracing model, the higher incident angle waves (> 40°) may never be able to reach the reservoir interval
- Multiple and converted waves also add challenges on the imaging of high angle of incidence
- Based on rock physics cross-plots, acoustic impedance and density are good indicators of the porous zone in middle Marrat
- The seismic inversion is dominated by the high amplitude of Gotnia and Najmah kerogen intervals. An inversion focused on Marrat interval will be needed in the future work

RESERVOIR CHARACTERIZATION **PROJECT**

New KOC Raudhatain Field Projects

Nadima Dwihusna and Liwei Cheng November 14th, 2019

New KOC Dataset

- Project 1: Facies Inversion through Machine Learning
- OPROJECT 2: Multiple Attenuation

New KOC Dataset

- Project 1: Facies Inversion through Machine Learning
- OProject 2: Multiple Attenuation

New Data

35

111 110 23

New KOC Dataset

OPROJECT 1: Facies Inversion through Machine Learning

OProject 2: Multiple Attenuation

Generalized Stratigraphy and Seismic Section

Jurassic Reservoirs

LADINIAN

In pursuit of new ideas

Generalized Stratigraphy and Seismic Section

Source: KOC

Motivation: Improved Resolution in North Kuwait

- Seismic resolution at depths
 - Identify and map the internal facies variation within Gotnia and Najmah and propagation of Facies in 3D using ML
 - Conventional inversion workflows
- Reservoir characterization
 - Better understanding of depositional setting, fractures, and facies
 - Facies variation within highly pressurized HP/HT overburden (Salt-Anhydrite) with limestone stringers

Develop Machine Learning facies inversion workflow for mapping of reservoirs

Develop Machine Learning facies inversion workflow for mapping of reservoirs

Develop Machine Learning facies inversion workflow for mapping of reservoirs

Total of 76 wells

Total of 76 wells

4

RCP 0

Well Log Dataset

• 60 Training Well (80%)

Well Log Dataset

Total of 76 wells

- 60 Training Well (80%)
- 16 Blind Test Well (20%)

4

47

Well Log Dataset

-

18 Formations 1. Dammam

Dammam
Rus

Log Measurements

- 3. Tayarat
- 4. Ahmadi
- 5. Wara
- 6. Mauddud
- 7. Burgan
- 8. Shubaiba
- 9. Zubair
- 10. Ratawi
- 11. Minagish
- 12. Makhul
- 13. Hith
- 14. Gotnia
- 15. Najmah
- 16. Sargelu
- 17. Dhruma
- 18. Marrat

Well Name	MD	AT10	AT20	AT30	AT60	AT90	B\$	DTCO	DTSM	GR	LCAL	RHOB	TNPH
RA- XXX	6375.0	2.5215	0.8217	1.4122	1.4514	0.9376	22.00	56.5373	105.5745	10.0984	26.1590	-9999.0	-9999.0
RA- XXX	6375.5	2.5495	0.8689	1.4357	1.5383	1.0280	22.00	56.5298	105.6357	9.4572	26.0553	-9999.0	-9999.0
RA- XXX	6376.0	2.4921	0.9219	1.4327	1.1811	0.9163	22.00	56.5510	106.0674	10.7395	25.9980	-9999.0	-9999.0
RA- XXX	6376.5	3.1600	1.0835	2.0672	1.3989	1.0125	22.00	56.6967	108.9361	13.0237	25.9223	-9999.0	-9999.0
RA- XXX	6377.0	1.5874	0.7683	1.1848	1.1985	0.8125	22.00	56.9836	108.1616	14.6266	25.8667	-9999.0	-9999.0

Well Log Features

Log Measurements

Wireline Log Abbreviations

MD (F) BS (IN) **GR** (GAPI) HCAL (IN) **NPHI** (V/V)RT (OHMM) AT10 (OHMM) AT20 (OHMM) AT30 (OHMM) AT60 (OHMM) AT90 (OHMM) RHOB (G/C3) DTCO (US/F) DTS (US/F)

: Measured Depth : Bit Size : Gamma Ray : HRCC Caliper : Neutron Porosity : True Resistivity : Resistivity A10 : Resistivity A20 : Resistivity A30 : Resistivity A60 : Resistivity A90 : Bulk Density : Compressional : Shear

Well Name	MD	AT10	AT20	AT30	AT60	AT90	BS	DTCO	DTSM	GR	LCAL	RHOB	TNPH
RA- XXX	6375.0	2.5215	0.8217	1.4122	1.4514	0.9376	22.00	56.5373	105.5745	10.0984	26.1590	-9999.0	-9999.0
RA- XXX	6375.5	2.5495	0.8689	1.4357	1.5383	1.0280	22.00	56.5298	105.6357	9.4572	26.0553	-9999.0	-9999.0
RA- XXX	6376.0	2.4921	0.9219	1.4327	1.1811	0.9163	22.00	58.5510	108.0874	10.7395	25.9980	-9999.0	-9999.0
RA- XXX	6376.5	3.1600	1.0835	2.0872	1.3989	1.0125	22.00	58.6967	106.9361	13.0237	25.9223	-9999.0	-9999.0
RA- XXX	6377.0	1.5874	0.7683	1.1848	1.1985	0.8125	22.00	56.9836	108.1616	14.6266	25.8667	-9999.0	-9999.0

Well Log Features

Dataset Processing

18 Formations

- Dammam 1.
- 2. Rus
- 3. Tayarat
- Ahmadi 4.
- 5. Wara
- 6. Mauddud
- 7. Burgan
- Shubaiba 8.
- 9. Zubair
- 10. Ratawi

14.

15.

16.

17.

18.

- 11. Minagish
- Makhul 12 13. Hith

Gotnia

Najmah

- Jurassic
 - Reservoirs

Shale

- Sargelu
- Dhruma
- Marrat

Dataset Processing

18 Formations

- Dammam 1.
- 2. Rus
- 3. **Tayarat**
- Ahmadi 4.
- 5. Wara
- 6. Mauddud
- 7. Burgan
- 8. Shubaiba
- 9. Zubair
- 10. Ratawi

13.

14.

15.

16.

Minagish 11.

Hith

Makhul 12

Gotnia

Najmah

- Jurassic
- Reservoirs

Shale

- Sargelu
- Dhruma 17.
- 18. Marrat

West to East Cross Section

West to East Cross Section

Develop Machine Learning facies inversion workflow for mapping of unconventional reservoirs

- Develop Machine Learning facies inversion workflow for mapping of unconventional reservoirs
- Enhance the resolution at depths by identifying and mapping the internal facies variation
- Optimize reservoir characterization and update geological model with seismic facies from Machine Learning
 - Support complex well designs/profiles
 - Facilitate casing and well placement in the Jurassic reservoir
 - Reduce HSE risk

New KOC Dataset

- OProject 1: Facies Inversion through Machine Learning
- OPROJECT 2: Multiple Attenuation

- Understand and predict the inter-bed multiples generated from the high velocity and high impedance contrast overburden layers
- Evaluate the multiple attenuation methods used in the industry
- Attenuate inter-bed multiples and improve imaging at deep Jurassic reservoir intervals
- If possible, characterize fractures from the multiple-attenuated seismic data for the reservoir development

Demultiple-related Processing Flow

Surface Related Multiple Elimination (SRME)

 Data driven surface-related multiple prediction

Adaptive multiple subtraction

Dragoset et al., 2010

2-layer Isotropic Acoustic Model

500 m

Vs = 2000 m/s Rho = 2.5 g/cc

Parameters:

Vertical source Free surface on Frequency: 20 Hz

Primary with Surface Related Multiples

Surface Related Multiple Prediction

After Adaptive Subtraction

Future work

- Zero-offset/walkaway/3D VSP data
 - Better understand the inter-bed multiple and converted waves
 - Understand near surface complexity
- Continue on evaluating demultiple methods used in the industry
 - SRME
 - Inverse scattered series
 - Marchenko equation

Acknowledgement

Thank you RCP industry sponsors

Questions ?

Seismic data processing flow

Synthetic traces in an arbitrary line

ie 2	113 145 177 209 241 273 305 337 369 401 433 465 497 529 561 593 625 657 689 721 753 785 817 849 881 913 945 977 1017 1057 1097 1137 1177 1217 1257 1297 1337 1377 1417 1457 1497 1537 1577 1617 1657 1697 1737 1777 1817 1857 1897 1937 1279 1279 1279 12849 2847 2843 2849 2847 2843 2843 2843 2843 2843 2843 2843 2843	
1 0 200	RA-03257L RA-0325511-5 RA-0367-M RA-0483-1 RA-0420-6 RA-0250-K RA-0250-A RA-0240-D RA-0511-J RA-0328,F RA-0292-C RA-0276-8	The stands
400		
600		Rus
800		Tayarat
1000 1200		Mishrif
1400		
1600		Zubair
1800		Minagish
2200		Hith
2400		MMR
2800		