

**RESERVOIR** CHARACTERIZATION **PROJECT** 

## Formation Lithology Classification: Evaluation of Machine Learning Methods

Nadima Dwihusna, MS student November 14<sup>th</sup>, 2019





#### Outline

## Introduction

- Study Area and Geological Facies Description
- Machine Learning Application to Facies Classification
- Or Results

## Outline



## Introduction

- Study Area and Geological Facies Description
- Machine Learning Application to Facies Classification
- O Results

## What is Machine Learning (ML)?



Field of study that gives computers the ability to learn without being explicitly programmed (Arthur Samuel [1959])

**Traditional Programming** 









## Introduction

## Study Area and Geological Facies Description

- Machine Learning Application to Facies Classification
- O Results

## Hugoton and Panoma Study Area





<sup>(</sup>Kansas Geological Survey)

## **Geological Facies Description**





(Zeller, 1968; Pippin, 1985)



## **Geological Facies Description**





(Zeller, 1968; Pippin, 1985)



11

## Well Log Dataset

## Total of 9 Wells

- 7 training wells
- 2 blind test wells



## Well Log Dataset







#### Training and Testing

BYERLY



• Training dataset  $\mathbf{y} \approx f(\mathbf{X})$ • Testing data  $\mathbf{y} \approx f(\mathbf{X})$ 





- o 9 discrete rock facies
  - 1. Sandstone
  - 2. Coarse siltstone
  - 3. Fine siltstone
  - 4. Siltstone and Shale
  - 5. Mudstone
  - 6. Wackestone
  - 7. Dolomite
  - 8. Packstone
  - 9. Bafflestone





o 9 discrete rock facies

350

300

250

200

150

100

50

0

sandstone

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone







#### o 9 discrete rock facies

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone





#### O 9 discrete rock facies

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone



(Encyclopedia Britannica, 1985)



#### O 9 discrete rock facies

- 1. Sandstone •
- 2. Coarse siltstone
- 3. Fine siltstone •
- 4. Siltstone and Shale
- 5. Mudstone •
- 6. Wackestone
- 7. Dolomiteo
- 8. Packstone •
- 9. Bafflestone •



# Log Measurements

#### o 9 discrete rock facies

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone

| well_name   | depth  | facies | gr    | ild_log10 | deltaphi | phind  | pe  |
|-------------|--------|--------|-------|-----------|----------|--------|-----|
| Blackfoot1A | 2793.0 | 3      | 77.45 | 0.664     | 9.9      | 11.915 | 4.6 |
| Blackfoot1A | 2793.5 | 3      | 78.26 | 0.661     | 14.2     | 12.565 | 4.1 |
| Blackfoot1A | 2794.0 | 3      | 79.05 | 0.658     | 14.8     | 13.050 | 3.6 |
| Blackfoot1A | 2794.5 | 3      | 86.10 | 0.655     | 13.9     | 13.115 | 3.5 |
| Blackfoot1A | 2795.0 | 3      | 74.58 | 0.647     | 13.5     | 13.300 | 3.4 |
|             |        |        |       |           |          |        |     |

#### **Facies Labels Feature Variables**



#### Log Measurements

| Wireline Lo | <u>g Abbreviations</u>                 |  |  |  |
|-------------|----------------------------------------|--|--|--|
| gr          | Gamma Ray                              |  |  |  |
| ild_log10   | Deep Induction Log                     |  |  |  |
| phind       | Neutron-Density Porosity               |  |  |  |
| deltaphi    | Neutron-Density Porosity<br>Difference |  |  |  |

pe Photoelectric Log

| well_name   | depth  | facies | gr    | ild_log10 | deltaphi | phind  | pe  |
|-------------|--------|--------|-------|-----------|----------|--------|-----|
| Blackfoot1A | 2793.0 | 3      | 77.45 | 0.664     | 9.9      | 11.915 | 4.6 |
| Blackfoot1A | 2793.5 | 3      | 78.26 | 0.661     | 14.2     | 12.565 | 4.1 |
| Blackfoot1A | 2794.0 | 3      | 79.05 | 0.658     | 14.8     | 13.050 | 3.6 |
| Blackfoot1A | 2794.5 | 3      | 86.10 | 0.655     | 13.9     | 13.115 | 3.5 |
| Blackfoot1A | 2795.0 | 3      | 74.58 | 0.647     | 13.5     | 13.300 | 3.4 |
|             |        |        |       |           |          |        |     |

**Facies Labels Feature Variables** 







**Facies Labels** 

#### **Feature Variables**

**Facies Predictions** 





## Introduction

- Study Area and Geological Facies Description
- Machine Learning Application to Facies Classification
- ORESULTS



#### Machine Learning Workflow



Optimize hyperparameters Train & validate algorithm on training dataset

Test algorithm on testing data





#### Machine Learning Workflow

#### **Processed Training Wells**





#### **Processed Training Wells**





### **Processed Training Wells**





#### Labeled Feature Clusters





- Bafflestone Packstone
- Dolomite
- Wackestone
- Mudstone
- Siltstone & Shale
- Fine Siltstone
- Coarse Siltstone
  - Sandstone





## What is Supervised Machine Learning?





Regression

- Predict continuous quantity output
  - Eg. Predicting the value of porosity given P-wave velocity and density



- Predict discrete class label output
  - Eg. Given GR and Porosity log, predicting lithology as sand/shale

Supervised Machine Learning Methods



- 1. K–Nearest Neighbors (KNN)
- 2. Support Vector Machine (SVM)
- 3. Random Forest
- 4. Multilayer Perceptron (MLP) Neural Network
- 5. 2D Convolutional Neural Network (CNN)

## 2D Convolutional Neural Network







#### Machine Learning Workflow





## Introduction

- Study Area and Geological Facies Description
- Application of Machine Learning to Lithology Classification
- Results


Greenwood Gas Field



## **Confusion Matrix**



#### Allows visualization of an algorithm's performance



**Rock Facies** 

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone

#### Blind Well 1 – Testing Results





#### **Rock Facies**

- 1. Sandstone 6. Wackestone
- 2. Coarse siltstone 7. Dolomite
- 3. Fine siltstone 8. Packstone
- 4. Siltstone, Shale 9. Bafflestone
- 5. Mudstone

#### **Dataset Processing**







# **Dataset Processing**



#### o 9 discrete rock facies

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone



# Dataset Processing (4 lumped lithofacies)



#### o 9 discrete rock facies

- 1. Sandstone
- 2. Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone



# Dataset Processing (4 lumped lithofacies)

 $\bigcirc$ 

 $\bigcirc$ 



# O discrete rock facies

- Sandstone
  Coarse siltstone
- 3. Fine siltstone
- 4. Siltstone and Shale
- 5. Mudstone
- 6. Wackestone
- 7. Dolomite
- 8. Packstone
- 9. Bafflestone



## **Pre-processed Training Wells**





## **Pre-processed Training Wells**





## **Pre-processed Training Wells**





#### RCP © In pursuit of new ideas

## Labeled Clusters





Greenwood Gas Field



(Encyclopedia Britannica, 1985)

(A1, Fe)203-XH20

(Ce, Mg)CD3

## Blind Well 1 – Testing Results





#### **Rock Facies**

- 1. Sandstone, Fine and Coarse Siltstone
- 2. Siltstone and Shale
- 3. Mudstones
- 4. Dolomite

# Adding Dolomite in Training Dataset





- Mudstones
- Dolomite
- Siltstone & Shale
- Sandstone, Fine & Coarse Siltstone



Greenwood Gas Field

## Blind Well 1 – Testing Results





#### **Rock Facies**

- 1. Sandstone, Fine and Coarse Siltstone
- 2. Siltstone and Shale
- 3. Mudstones
- 4. Dolomite

# Conclusion



#### Lithofacies classification using ML

- Strong match in overall lithofacies sequence and boundaries
- Perform best with optimized hyperparameters and more training data



## Conclusion



- Lithofacies classification using ML
  - Strong match in overall lithofacies sequence and boundaries
  - Perform best with optimized hyperparameters and more training data
- Supervised ML methods tend to perform more accurately with more differential facies to classify



# Conclusion



- Lithofacies classification using ML
  - Strong match in overall lithofacies sequence and boundaries
  - Perform best with optimized hyperparameters and more training data
- Supervised ML methods tend to perform more accurately with more differential facies to classify
- Strong match in lithofacies classification especially from Random Forest (90%) and 2D CNN (91%)

### **Future Work**



Develop Machine Learning facies inversion workflow for mapping of reservoirs in Raudhatain Field, Kuwait



## Future Work



Develop Machine Learning facies inversion workflow for mapping of reservoirs in Raudhatain Field, Kuwait



#### Acknowledgement

Thank you RCP industry sponsors





#### Index

#### **Processed Training Wells**





- Bafflestone Siltstone & Shale Fine Siltstone ٠
- Packstone ٠
  - Dolomite
- Wackestone
- Mudstone ٠

- Coarse Siltstone Sandstone
- •



## Blind Well 1 – Adding Dolomite in Training Set

![](_page_63_Figure_1.jpeg)

#### **Rock Facies**

- 1. Sandstone 6. Wackestone
- 2. Coarse siltstone 7. Dolomite
- 3. Fine siltstone 8. Packstone
- 4. Siltstone, Shale 9. Bafflestone
- 5. Mudstone

In pursuit of new ideas

![](_page_64_Picture_0.jpeg)

# **INDEX – TRAINING AND TESTING RESULTS**

## Testing and Training Results (9 Lithofacies)

![](_page_65_Picture_1.jpeg)

#### **Training Data Accuracy**

|                | After<br>Standard<br>Scaling Train<br>and Test | Drop<br>Gamma<br>Ray (GR) | Drop<br>Resistivity<br>(ILD_log 10) | Drop Neutron<br>Density<br>Porosity<br>Difference<br>(Delta_PHI) | Drop<br>Nuetron<br>Density<br>Porosity<br>(NDPHI) | Drop<br>Photoelectric<br>(PE) | Drop<br>(Delta_PHI)<br>and (NDPHI) | Use<br>Relative<br>Depths as<br>6th feature | Use Relative<br>Depths as the<br>only feature | Only use four<br>features from<br>PCA |
|----------------|------------------------------------------------|---------------------------|-------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------|
| SVM            | 97.32%                                         | 87.86%                    | 87.34%                              | 87.94%                                                           | 89.38%                                            | 46.77%                        | 70.37%                             | 99.60%                                      | 35.14%                                        | 89.66%                                |
| RF             | 64.34%                                         | 83.31%                    | 82.99%                              | 83.55%                                                           | 84.90%                                            | 84.35%                        | 78.75%                             | 89.54%                                      | 45.13%                                        | 84.38%                                |
| KNN            | 41.43%                                         | 78.19%                    | 78.08%                              | 79.39%                                                           | 78.99%                                            | 78.63%                        | 75.80%                             | 85.06%                                      | 32.74%                                        | 79.79%                                |
| MLP            | 65.14%                                         | 58.47%                    | 58.31%                              | 61.38%                                                           | 59.42%                                            | 79.39%                        | 55.11%                             | 68.53%                                      | 38.08%                                        | 58.63%                                |
| CNN 100 epochs | 50.85%                                         | 78.02%                    | 81.38%                              | 78.66%                                                           | 79.11%                                            | 80.14%                        | 70.53%                             | 77.83%                                      | 8.32%                                         |                                       |
| CNN 5 epochs   | 59.70%                                         | 79.11%                    | 82.78%                              | 79.53%                                                           | 80.59%                                            | 80.51%                        | 71.66%                             | 78.58%                                      | 8.66%                                         |                                       |
| Average        | 63.81%                                         | 77.17%                    | 77.62%                              | 78.18%                                                           | 78.36%                                            | 73.86%                        | 70.11%                             | 84.11%                                      | 31.88%                                        | 78.12%                                |
|                |                                                |                           |                                     |                                                                  |                                                   |                               |                                    |                                             |                                               |                                       |

#### **Testing Data Accuracy**

|              |                | After<br>Standard<br>Scaling Train<br>and Test | Drop<br>Gamma<br>Ray (GR) | Drop<br>Resistivity<br>(ILD_log 10) | Drop Neutron<br>Density<br>Porosity<br>Difference<br>(Delta_PHI) | Drop<br>Nuetron<br>Density<br>Porosity<br>(NDPHI) | Drop<br>Photoelectric<br>(PE) | Drop<br>(Delta_PHI)<br>and (NDPHI) | Use<br>Relative<br>Depths as<br>6th feature | Use Relative<br>Depths as the<br>only feature | Only use four<br>features from<br>PCA |
|--------------|----------------|------------------------------------------------|---------------------------|-------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------|
|              | SVM            | 38.08%                                         | 31.63%                    | 39.87%                              | 40.09%                                                           | 36.08%                                            | 37.19%                        | 34.74%                             | 38.31%                                      | 41.20%                                        | 31.63%                                |
|              | RF             | 50.33%                                         | 41.87%                    | 52.12%                              | 46.55%                                                           | 49.00%                                            | 46.77%                        | 43.43%                             | 46.77%                                      | 35.14%                                        | 42.98%                                |
|              | KNN            | 38.53%                                         | 35.19%                    | 39.20%                              | 38.08%                                                           | 34.30%                                            | 38.08%                        | 33.41%                             | 35.19%                                      | 30.73%                                        | 32.96%                                |
|              | MLP            | 41.43%                                         | 44.77%                    | 46.33%                              | 45.66%                                                           | 44.54%                                            | 42.76%                        | 47.88%                             | 41.20%                                      | 32.74%                                        | 47.22%                                |
|              | CNN 100 epochs | 50.35%                                         | 44.52%                    | 51.75%                              | 44.76%                                                           | 47.32%                                            | 43.82%                        | 34.73%                             | 48.95%                                      | 16.78%                                        |                                       |
| $\mathbf{N}$ | CNN 5 epochs   | 51.05%                                         | 44.52%                    | 49.88%                              | <b>52.91%</b>                                                    | 44.06%                                            | 42.89%                        | 36.13%                             | 50.58%                                      | 8.89%                                         |                                       |
| Χ            | Average        | 43.74%                                         | 39.59%                    | 45.85%                              | 43.03%                                                           | 42.25%                                            | 41.73%                        | 38.84%                             | 42.08%                                      | 31.32%                                        | 38.70%                                |

## Testing and Training Results (4 Lithofacies)

![](_page_66_Picture_1.jpeg)

#### **Training Data Accuracy**

| Diop                                                                                                    |            |
|---------------------------------------------------------------------------------------------------------|------------|
| After Drop Neutron Nuetron Use Relation                                                                 | e Only use |
| Standard Drop Density Porosity Density Drop Drop Relative Depthe                                        | is four    |
| Scaling Train Drop Gamma Resistivity Difference Porosity Photoelectric (Delta_PHI) Depths as the option | / features |
| and Test Ray (GR) (ILD_log 10) (Delta_PHI) (NDPHI) (PE) and (NDPHI) 6th feature feature                 | from PCA   |
| SVM 99.20% 93.89% 95.41% 96.41% 96.57% 96.09% 90.42% 99.72% 64.46                                       | 96.29%     |
| RF 86.62% 90.22% 91.13% 91.85% 91.73% 92.01% 90.42% 94.21% 68.77                                        | 91.61%     |
| KNN 92.41% 89.94% 90.58% 92.13% 91.41% 90.73% 89.58% 94.29% 61.46                                       | 91.09%     |
| MLP 91.33% 86.34% 87.22% 90.34% 88.98% 91.85% 90.54% 93.85% 65.69                                       | 88.58%     |
| CNN 100 epochs 97.58% 96.48% 97.43% 96.82% 96.90% 96.56% 96.10% 97.16% 57.06                            |            |
| CNN 5 epochs 97.99% 96.67% 97.58% 96.90% 97.54% 97.12% 90.44% 97.31% 57.02                              |            |
| Average 93.43% 91.37% 92.35% 93.51% 93.12% 93.45% 91.41% <b>95.85%</b> 63.49                            | 91.89%     |

#### **Testing Data Accuracy**

| - [ |                |               |            |              |                  | Drop     |               |             |             | Use       |          |
|-----|----------------|---------------|------------|--------------|------------------|----------|---------------|-------------|-------------|-----------|----------|
|     |                | After         |            |              | Drop Neutron     | Nuetron  |               |             | Use         | Relative  | Only use |
|     |                | Standard      |            | Drop         | Density Porosity | Density  | Drop          | Drop        | Relative    | Depths as | four     |
|     |                | Scaling Train | Drop Gamma | Resistivity  | Difference       | Porosity | Photoelectric | (Delta_PHI) | Depths as   | the only  | features |
|     |                | and Test      | Ray (GR)   | (ILD_log 10) | (Delta_PHI)      | (NDPHI)  | (PE)          | and (NDPHI) | 6th feature | feature   | from PCA |
|     | SVM            | 79.96%        | 74.61%     | 75.95%       | 80.40%           | 81.74%   | 80.18%        | 87.08%      | 78.17%      | 78.40%    | 73.27%   |
|     | RF             | 88.42%        | 86.19%     | 87.97%       | 89.09%           | 89.98%   | 86.64%        | 89.53%      | 88.64%      | 68.82%    | 88.64%   |
|     | KNN            | 82.41%        | 77.28%     | 82.41%       | 82.41%           | 82.41%   | 84.19%        | 89.53%      | 82.63%      | 67.93%    | 84.41%   |
|     | MLP            | 83.30%        | 79.96%     | 87.53%       | 85.52%           | 87.75%   | 84.19%        | 83.52%      | 79.73%      | 76.61%    | 87.75%   |
|     | CNN 100 epochs | 88.58%        | 84.15%     | 89.04%       | 91.14%           | 88.34%   | 86.95%        | 90.44%      | 88.34%      | 77.16%    |          |
|     | CNN 5 epochs   | 89.04%        | 84.62%     | 89.04%       | 90.21%           | 89.28%   | 87.65%        | 90.44%      | 88.58%      | 77.62%    |          |
| Χ   | Average        | 83.52%        | 80.44%     | 84.58%       | 85.71%           | 86.04%   | 84.43%        | 88.02%      | 83.50%      | 73.78%    | 83.52%   |

#### Random Forest Feature Importance

![](_page_67_Picture_1.jpeg)

|   | Feature                                        | Feature Importance |
|---|------------------------------------------------|--------------------|
| 0 | Gamma Ray (GR)                                 | 0.24394525         |
| 1 | Resistivity (ILD)                              | 0.21422884         |
| 4 | Photoelectric Density (PE)                     | 0.21242498         |
| 3 | Neutron Density Porosity (PHIND)               | 0.19133538         |
| 2 | Neutron Density Porosity Difference (DeltaPHI) | 0.13806556         |

![](_page_68_Picture_0.jpeg)

# **INDEX – PCA AND RELATIVE DEPTH**

### Blind Well 1 – Only Use PCA Features

Greenwood Gas Field

![](_page_69_Figure_1.jpeg)

![](_page_69_Figure_2.jpeg)

#### Blind Well 1 – Only Use PCA Features

![](_page_70_Picture_1.jpeg)

![](_page_70_Figure_2.jpeg)

#### **Rock Facies**

- 1. Sandstone6. Wackestone
- 2. Coarse siltstone 7. Dolomite
- 3. Fine siltstone 8. Packstone
- 4. Siltstone, Shale 9. Bafflestone
- 5. Mudstone

![](_page_71_Figure_0.jpeg)
# Blind Well 1 – Only Use PCA Features





### **Rock Facies**

- 1. Sandstone, Fine and Coarse Siltstone
- 2. Siltstone and Shale
- 3. Mudstones
- 4. Dolomite



## Blind Well 1 – Only Use Relative Depth



#### **Rock Facies**

- 1. Sandstone 6. Wackestone
- 2. Coarse siltstone 7. Dolomite
- 3. Fine siltstone 8. Packstone
- 4. Siltstone, Shale 9. Bafflestone
- 5. Mudstone

In pursuit of new ideas



## Blind Well 1 – Only Use Relative Depth



### **Rock Facies**

- 1. Sandstone, Fine and Coarse Siltstone
- 2. Siltstone and Shale
- 3. Mudstones
- 4. Dolomite

In pursuit of new ideas