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What is Machine Learning (ML)?

Field of study that gives computers the ability to learn without being 

explicitly programmed (Arthur Samuel [1959])

Program
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Types of Machine Learning
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Hugoton and Panoma Study Area

(Kansas Geological Survey)

(Kansas Geological Survey)
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Geological Facies Description

Hugoton

A

West

Gas Water Contact
Panoma

A’

East

(Pippin, 1985)

(Zeller, 1968; Pippin, 1985)
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Geological Facies Description

(Zeller, 1968; Pippin, 1985)
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Geological Facies Description

(Zeller, 1968; Pippin, 1985)

Lumped Lithofacies
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Well Log Dataset

Total of 9 Wells

• 7 training wells

• 2 blind test wells

(Kansas Geological Survey)
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Well Log Dataset

All Data

Training Dataset Testing Data

Training Data Validation Data

Learn Validate Learn

Test
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Training and Testing

Target

(Outcome vector) 
Feature Data

Function

Known

Unknown

Training dataset

Testing data

y ≈ f (X )

y ≈ f (X )
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Dataset Processing
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Log Measurements

Facies Labels Feature Variables
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Log Measurements

Facies Labels Feature Variables

Wireline Log Abbreviations

gr Gamma Ray

ild_log10   Deep Induction Log

phind Neutron-Density Porosity 

deltaphi Neutron-Density Porosity 

Difference

pe Photoelectric Log
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Well 1 Well 2 Well 3 Well 5 Well 6

Processed Training Wells

Well 4
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Relative Depth

Well 1 Well 2 Well 3 Well 4 Well 5 Well 6

Processed Training Wells
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Relative Depth

Well 1 Well 2
Well 3

Well 4
Well 5 Well 6

Processed Training Wells
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Labeled Feature Clusters

Relative

Depth

Bafflestone

Packstone

Dolomite

Wackestone

Mudstone

Siltstone & Shale

Fine Siltstone

Coarse Siltstone

Sandstone

PEPhiNDDeltaPHIILDGR
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Types of Machine Learning
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What is Supervised Machine Learning?

Predict continuous quantity output
• Eg. Predicting the value of porosity 

given P-wave velocity and density

Predict discrete class label output  
• Eg. Given GR and Porosity log, 

predicting lithology as sand/shale
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Supervised Machine Learning Methods

1. K–Nearest Neighbors (KNN) 

2. Support Vector Machine (SVM) 

3. Random Forest 

4. Multilayer Perceptron (MLP) Neural Network

5. 2D Convolutional Neural Network (CNN)
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2D Convolutional Neural Network

Input

Flatten Softmax

9 

1

2

20

6

Trained 

Depth

10 ft 

above

10 ft 

below

FEATURE LEARNING CLASSIFICATION

Dense, 

50 nodes, 

ReLU

Dense, 

9 nodes, 

Softmax

Kernel 6 x 1
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Blind Well 1 – Testing Results

38 % 46 %35 % 41 % 50 %

CNN
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Confusion Matrix

Allows visualization of an algorithm’s performance

Rock Facies
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Blind Well 1 – Testing Results

Rock Facies

1. Sandstone
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3. Fine siltstone

4. Siltstone, Shale

5. Mudstone

(38 %) (46 %)(35 %) (41 %)

6. Wackestone

7. Dolomite

8. Packstone

9. Bafflestone

(50 %)CNN
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Dataset Processing
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Pre-processed Training Wells

Well 1 Well 2 Well 3 Well 5 Well 6Well 4
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Pre-processed Training Wells

Relative Depth

Well 1 Well 2 Well 3 Well 5 Well 6Well 4
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Pre-processed Training Wells

Relative Depth

Well 1 Well 2
Well 3

Well 4
Well 5 Well 6
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Labeled Clusters

Relative

Depth

PEPhiNDDeltaPHIILDGR

Mudstones

Dolomite

Siltstone & Shale

Sandstone, Fine & 

Coarse Siltstone
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Blind Well 1 – Testing Results

79 % 88 %82 % 83 % 89 %

CNN
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Blind Well 1 – Testing Results

(79 %) (88 %)(82 %) (83 %) (89 %)CNN

Rock Facies

1. Sandstone, Fine and Coarse Siltstone

2. Siltstone and Shale

3. Mudstones

4. Dolomite
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Adding Dolomite in Training Dataset

Well 1 Well 2 Well 3 Well 5 Well 6Well 4 Well 7
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Blind Well 1 – Testing Results

86 % 90 %85 % 89 % 91 %

CNN
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Blind Well 1 – Testing Results
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Conclusion

Lithofacies classification using ML

• Strong match in overall lithofacies sequence and boundaries

• Perform best with optimized hyperparameters and more training data
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Conclusion

Lithofacies classification using ML

• Strong match in overall lithofacies sequence and boundaries

• Perform best with optimized hyperparameters and more training data

Supervised ML methods tend to perform more accurately with 

more differential facies to classify

Strong match in lithofacies classification especially from 

Random Forest (90%) and 2D CNN (91%)
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Future Work

Develop Machine Learning facies inversion workflow for 

mapping of reservoirs in Raudhatain Field, Kuwait
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Future Work

Develop Machine Learning facies inversion workflow for 

mapping of reservoirs in Raudhatain Field, Kuwait

2D CNN
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Index
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Well 1 Well 2 Well 3 Well 5 Well 6

Processed Training Wells

Well 4 Well 7
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Blind Well 1 – Adding Dolomite in Training Set

39 % 50 %38 % 46 % 50 %

CNN
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Blind Well 1 – Adding Dolomite in Training Set

Rock Facies

1. Sandstone

2. Coarse siltstone

3. Fine siltstone

4. Siltstone, Shale

5. Mudstone

(39 %) (50 %)(38 %) (46 %)

6. Wackestone

7. Dolomite

8. Packstone

9. Bafflestone

(50 %)CNN
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Training Data Accuracy

Testing Data Accuracy
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Random Forest Feature Importance

Feature Feature Importance

0 Gamma Ray (GR) 0.24394525

1 Resistivity (ILD) 0.21422884

4 Photoelectric Density (PE) 0.21242498

3 Neutron Density Porosity (PHIND) 0.19133538

2 Neutron Density Porosity Difference (DeltaPHI) 0.13806556
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INDEX – PCA AND RELATIVE DEPTH 
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Blind Well 1 – Only Use PCA Features

83 % 92 %83 % 87 %
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Blind Well 1 – Only Use PCA Features

Rock Facies

1. Sandstone

2. Coarse siltstone

3. Fine siltstone

4. Siltstone, Shale

5. Mudstone

(83 %) (92 %)(83 %) (87 %)

6. Wackestone

7. Dolomite

8. Packstone

9. Bafflestone
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Blind Well 1 – Only Use PCA Features

73 % 88 %84 % 87 %
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Blind Well 1 – Only Use PCA Features

(73 %) (88 %)(84 %) (87 %)

Rock Facies

1. Sandstone, Fine and Coarse Siltstone

2. Siltstone and Shale

3. Mudstones

4. Dolomite
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Blind Well 1 – Only Use Relative Depth 

41 % 35 %30 % 32 % 16 %

CNN
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Blind Well 1 – Only Use Relative Depth 

Rock Facies

1. Sandstone

2. Coarse siltstone

3. Fine siltstone

4. Siltstone, Shale

5. Mudstone

(41 %) (35 %)(30 %) (32 %)

6. Wackestone

7. Dolomite

8. Packstone

9. Bafflestone

(16 %)CNN
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Blind Well 1 – Only Use Relative Depth 

78 % 89 %67 % 76 % 77 %

CNN
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Blind Well 1 – Only Use Relative Depth 

(78 %) (89 %)(67 %) (76 %) (77 %)CNN

Rock Facies

1. Sandstone, Fine and Coarse Siltstone

2. Siltstone and Shale

3. Mudstones

4. Dolomite


