

RESERVOIR CHARACTERIZATION **PROJECT**

Midland Basin Project

Gary Binder and Aleksei Titov

Introduction

In 2018, Apache monitored the stimulation of 13 horizontal wells in the Midland Basin using distributed acoustic sensing (DAS) in two of the wells

Introduction

- RCP ©
- 4 different landing zones were tested with variations in well spacing and stage design

Interstage DAS VSP Survey

- VSP surveys were conducted after every fracturing stage of the DAS wells
- Two vibroseis sources offset from the heel and toe of the fiber wells
- The use of permanent engineered fiber technology lead to substantial improvements in SNR
- Current observations
 - ~1 ms time shifts of the direct Pwave arrival
 - P to S scattered waves after nearly every stage

Project Objectives

- Analyze P and S-wave time shifts, amplitude changes, and scattering effects caused by each stage of hydraulic fracturing
- Use time-lapse response to characterize the geometry and dynamics of hydraulic fractures
- Characterize the interference of other zipper group wells in the time-lapse signal
- Associate time-lapse changes with variations in completion design parameters
- Use findings to design future acquisition geometries

RCP PHASE XVII: WOLFCAMP PROJECT RECAP

Recap: Data Quality

RCP ©

- Standard optical fiber was used in the previous survey
- Improved interrogator technology and the use of engineered optical fiber has lead to a factor ~100 improvement in SNR
- Comparison of single, raw correlated sweeps:

Recap: P-Wave Time Shifts for All Stages

Stack time shifts as a function distance from stage port to increase SNR

Stage-to-stage variations are comparable to the noise level

Recap: P-Wave Time Shifts for All Stages

Stack time shifts as a function distance from stage port to increase SNR

Recap: Height Estimation

Any tracing can be used to map the shadow to the height of the SRV above the stage port

Recap: Mechanism of Time Shifts

- Natural or hydraulic fractures increase compliance of the medium
 - Normal/tangent to fracture plane, Z_N/Z_T
 - Z_N/Z_T is sensitive to fluid or proppant content
 - $Z_N/Z_T \rightarrow 0$ for fluid-filled fractures
- Fracture compliance often observed to have exponential dependence on effective stress in core studies:
 - $Z_N, Z_T \propto \exp\left(-\frac{\sigma_N p(t)}{\sigma_c}\right)$

Zhang, Y., C. M. Sayers, and J. I. Adachi, 2009, Geophysical Journal International, **177**, 205–221.

Recap: Decay of Time Shifts

 ▲ Linear pressure decline due to leak off leads to an exponential decay in time shifts

$$Z_N, Z_T \propto \exp\left(-\frac{\sigma_N - p(t)}{\sigma_c}\right) \propto \exp\left(-\frac{t}{\tau}\right)$$

 Decay constant sensitive to permeability and several other formation, fluid, pumping and fracture Formation parameters

$$\tau \propto \frac{\sigma_c}{S_f(ISIP - p_0)} \sqrt{\frac{\mu K_f t_p}{k\phi}}$$

RCP ©

Recap: Modeling

- A simple model of exponentially decaying fracture compliance was fit to the data
- 2D elastic full wavefield finite difference modeling was conducted to predict time shifts
- Software available to RCP sponsors

Parameter	Value
h, half-height	1100 ft
w, half-width	16 ft
au, leak-off decay time	0.65 days
Z_N , normal fracture compliance	$1.2 \times 10^{-11} \text{ m/Pa}$
Z_N/Z_T , compliance ratio	0.1

Recap: Model vs. Data

• The model matches distribution of both P and S-wave time shifts

Recap: Scattered Waves

 Modeling also confirms PS converted waves that were seen weakly for a few stages

Data North P-Wave Difference: Stack Survey 30 to 35 - Pre Frac

Recap: Project Summary

- Time shifts and scattered waves are visible, but decay quickly over ~1 day
- SRV height can be estimated from a "shadow" effect in time shifts
- Finite difference modeling in an effective medium with vertical fractures closing exponentially with time matches the data well
- Fracture compliances, height, and leak-off decay time can be estimated from the data

Questions for New Survey

- Time-shifts and scattered waves
 visible after nearly every stage
- Can height, decay time and fracture compliance attributes be estimated stage by stage?
- Can these attributes be associated with changes in completion and geology?
- How do other zipper group wells influence the signal?

Data Acquisition

- Two wells, 1Bf and 9Bf, with engineered fiber cemented behind casing
- Same source locations used for both wells with two vibroseis trucks each

- Sweep parameters:
 - 20 sec sweep, 4 sec listen
 - 6 96 Hz
 - At least ~20 sweeps after each stage

1Bf: Timeline

- Survey timeline:
 - 3 baseline surveys
 - 41 interstage surveys
 - 5 "leak-off" surveys
- Other wells were zippered during survey
- Opportunity to observe signals from 4A and 2D wells
- Fiber break occurred during stage 22

9Bf: Timeline

- Survey timeline:
 - 9 baseline surveys
 - 44 interstage surveys
 - 8 "leak-off" surveys
- Other wells were zippered during survey
- Opportunity to observe frac hits from 11A and 10D wells

MD [ft]

P-wave Time Shift Observations

- P-wave time shifts follow a very different pattern than previous data
 - A primary component follows expected stage locations and decays quickly
 - Signs of secondary bands from other wells
- SRV height cannot be estimated based on the size of the time shift shadow alone
- Other wells have a significant influence on the time shift distribution
- Modeling all zipper group wells is needed to explain these observations

Multi-Well Modeling Approach

- Previous modeling can be generalized from 2D to pseudo-3D
- Assume each stage creates a planar distribution of vertical fractures
- All stages have the same parameters
- Approximate sources as lines to use 2D finite difference modeling

Map view of fracture compliance distribution after 20 stages:

Parameter	Value
h, half-height	1100 ft
L, length	1600 ft
w, half-width	30 ft
ϕ , strike	90° from well
au, decay time	1 day
Z_N , normal fracture compliance	$4.8 \times 10^{-11} \text{ m/Pa}$
Z_N/Z_T , compliance ratio	0.1

40

Data Processing

- Stacked, processed shot records were provided by Apache
- Significant statics caused by weather changes and vibe shifts are observed
- A control region (outside green polygon) is needed to estimate statics and subtract
- This region likely has significant signal from other wells

Stage #

Data Processing

- Stacked, processed shot records were provided by Apache
- Significant statics caused by weather changes and vibe shifts are observed
- A control region (outside green polygon) is needed to estimate statics and subtract
- This region likely has significant signal from other wells

Stage #

Modeling Summary

- Modeling indicates that secondary bands visible in time shifts are spatially and temporally consistent with fracs from other wells
- More work needed to fit model parameters to data
- Estimation of time shift statics will be revisited to remove potential contamination from other wells
- Interference from other wells also explains the large shadow from the toe source seen for both wells
- New methods are needed to estimate SRV height

Modeled Scattered Waves

- Scattered waves are seen from multiple wells in synthetic shot records
- A cleaner separation
 between between wells
 may enable a height
 estimate
- What do we see in data?

RESERVOIR CHARACTERIZATION PROJECT

Observations and Modeling of Scattered Waves from Hydraulic Fractures in a DAS VSP

Aleksei Titov

Motivation

- What are the scattered events?
- How often are they observable?
- How long do they last?
- Can we use them to characterize hydraulic fractures and efficiency of fracturing?
- How to properly model them?
- What parameters influence kinematic and dynamic response?

PREVIOUS WORK RECAP

Recap: Travel-Time Equations

Recap: Scattered Events Distribution

- 6 scattered events are observed
- Each event lasts from 5 to 24 hours
- Larger amplitude larger height or velocity contrast (fracturing efficiency)

SCATTERED WAVE OBSERVATIONS FOR MIDLAND BASIN PROJECT

9Bf Incident P-wave Amplitude (Baseline) In pursuit of new ideas ★ S1 **X** S2 Time (ms) Time (ms) Max. Amplitude Max. Amplitude Channel (#) Channel (#)

9Bf Normalized 4D Data

9Bf Incident P-wave Flattened 4D data

9Bf Converted PS-wave Flattened 4D data

9Bf Scattered Waves Amplitude

61

9Bf Scattered Events Distribution

9Bf Scattered Waves Observations

- Scattered waves observed for each stage of fracturing in 9Bf
- Events last less than the time between adjacent VSP shoots (< 5 hours)
- Quality of data allows analyzing amplitude distributions for the PS scattered events
- Scattering from SRV induced by other wells (10D, 11A) is observed and will be examined in detail

Future Work

- Model amplitude distributions for the PS scattered events
- Quantitatively analyze scattered wavefield for 1Bf and 9Bf
 - Calculate height for each SRV in fiber and adjacent wells
 - Calculate amplitude attributes for each scattered event
- Relate the derived parameters with treatment parameters

CONCLUSIONS AND FUTURE WORK

Objectives

- Analyze P and S-wave time shifts, amplitude changes, and scattering effects caused by each stage of hydraulic fracturing
- Use time-lapse response to characterize the geometry and dynamics of hydraulic fractures
- Characterize the interference of other zipper group wells in the time-lapse signal
- Associate time-lapse changes with variations
 in completion design parameters
- Use findings to design future acquisition geometries

Conclusions

Future Work

Objectives

 Analyze P and S-wave time shifts, amplitude changes, and scattering effects caused by each stage of hydraulic fracturing

Conclusions

- ~ 1 ms P-wave time shifts and PS converted waves observed consistently after each stage
- Both decay quickly after each stage
- Time shifts and scattered waves are also observed from other wells in the zipper group

Future Work

• Search for S-wave time shifts, amplitude changes, and SS/SP scattered waves

Conclusions **Objectives** Use time-lapse response to characterize the Interference from other wells currently ۲ geometry and dynamics of hydraulic fractures prevents estimates of SRV height based on shadowing and the leak-off decay time Length and azimuth of fracs from neighboring wells can be estimated 9Bf S2 Toe 50 40 30 Shift [ms] **Future Work** Stage 50 Develop inversion approaches taking into 10 account into account overlap of each stage's response 0 -3 Utilize methods based on scattered waves 9000 10000 11000 12000 13000 14000 15000 16000 that are less sensitive to stage and well MD [ft]

interference

71

Objectives

• Characterize the interference of other zipper group wells in the time-lapse signal

Conclusions

- Clear signs of fracs from all zippered wells are observed
- Scattered waves show a cleaner signal separation between wells

Future Work

• Determine length, azimuth, and height of fracs from neighboring wells
Project Summary

Objectives

Conclusions

 Associate time-lapse changes with variations in completion design parameters

Clear stage-to-stage variations above noise level are observed in time shifts and scattered waves that may be tied to varying geology and stage designs

Future Work

• Inversion approaches will be developed to account for changing incidence angles, fiber angular response, and scattering angles to associate time lapse changes with properties of underlying fractured rock

Project Summary

Objectives	Conclusions
 Use findings to design future acquisition geometries IBf Stage 20 9Bf Stage 20 	 Modeling software has been generalized to pseudo-3D Multiple wells can be modeled to study survey sensitivity to well interference
	Future Work
	 True 3D modeling Study alternate survey geometries in 3D that could better constrain fracture geometry and well interference

Thank you to Apache and all RCP Phase XVII Sponsors

In pursuit of new ideas