

RESERVOIR CHARACTERIZATION **PROJECT**

Rock Physics Modeling of Tight Gas Sands Lajas – Neuquén Basin

Atilas Silva Master's Student

- Objectives
- Location and geologic setting
- Data available
- Rock physics modeling
- Conclusions and future work

- Develop a rock physics model that can best represent the seismic response of the tight sand of the study area
- Construct rock physics templates aiming to quantitatively predict the seismic response as a function of key rock properties (porosity, pore aspect ratio, gas saturation, fracture density, pore pressure, etc.)
- Identify sweet spots in the seismic inversion data

Thermal Maturity Map

Los Molles

Vaca Muerta

Source: ARI, 2013.

In pursuit of new ideas Conventional Carbonates from the **Quintuco Formation** Vaca Muerta Source Rock Unconventional

- **Tight Sands**
- Lajas e Punta Rosada
- Ranging from 900 to 1500m of thickness
- Porosity: 4 to 10%
- Permeability: < 0.1 mD
- Los Molles Source Rock

Overpressurized tight sands

Martin, 2019 (allaboutshale.com)

Natural Fracture Network

Seismic

- PSDM and PSTM
- Full Stacks

Data Available

• Angle Stacks (Problem in the Far Stack)

o 29 Wells

Processed in 2015

Processed in 1998

ROCK PHYSICS MODELING

Lajas Formation

Seismic response for Sandstones

- High porosity sandstone:
 - Mineral composition
 - Porosity
 - Fluid type

Seismic response for Sandstones

- High porosity sandstone:
 - Mineral composition
 - Porosity
 - Fluid type

- Tight sandstone:
 - Most influenced by **Pore structure**.
 - An increase in velocity is mainly due to the closure of micro-cracks and compliant pores.

Inclusion-based Rock Physics Models

Effective medium approximations based on inclusions with different pore shapes can model the elastic moduli of low porosity rocks

Reservoir Characteristics

Compaction RCP o In pursuit of new ideas

Well A-10

Reservoir C	ut-offs
-------------	---------

5		Gas	Brine	Shale
	Clay	< 2	20%	> 20%
	PHIe	>		
	Sw	< 50%	> 50%	

Pocorvoir Cut offe					
Reservoir Cut-ons		Gas	Brine	Shale	RCPY
	Clay	< 2	20%	> 20%	In pursuit of new ide
	PHIe	>	4%		
	Sw	< 50%	> 50%		

Well A-10

Reservoir Cut-offs		Gas	Brine	Shale	RCP
	Clay	< 2	20%	> 20%	In pursuit of new idea
	PHIe	>	4%		
	Sw	< 50%	> 50%		

Composition	Homogonoous Matrix	Dry to Saturated	Acpact Patia Applycic	Clay Soncitivity	SW/ Soncitivity	
Composition	Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Ciay Sensitivity	Svv Sensitivity	

Reservoir Composition In pursuit of new ideas X-Ray Diffraction – 6 Wells ■ Clt ■ Illite ■ Caolinite ■ Quartz ■ Plagioclase ■ KF K = 76 Gpa Plagioclase, 17.17% K = 53.7 Gpa 5000m **KF, 4.13%** 1:77684 K = 39 Gpa K = 37 Gpa Illite, kaolinite, 5.83% K = 95 Gpa Quartz, 70.30% K = 1.5 Gpa 5.69% **Clt, 2.23%**

Two Homogeneous medium

(Voigt-Reuss-Hill)

Sil	icate Background (91.69	%)
	QTZ + PLG + KF	
	K = 44.2 Gpa	
	$\mu = 39 \text{ GPa}$ $ ho = 2.64 \ g/cm^3$	

Homogeneous Clay (8.4%)

Illite + Clt + kaolini	t
K = 51 Gpa $\mu = 12 \text{ GPa}$ $\rho = 2.80 \ a/cm^3$	

Stiffer $\alpha = 1.0$ K = 51 Gpa $\mu = 12 \text{ GPa}$ Softer $\alpha = 0.01$ + Bound water? $\rho = 2.80 \ g/cm^3$ Composition Homogeneous Matrix **Dry to Saturated Aspect Ratio Analysis Clay Sensitivity SW Sensitivity**

Kuster–Toksöz, 1974

Adding inclusions of clay into silicate background medium

Max porosity = max AR

Clay

SR_Lejes2_RN_Martin

A-10

A-10: Early inter-grain clay.

Composition Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity	/

Differential Effective Medium (DEM)

Berryman (1992)

In pursuit of new ideas

Dry Frame (Add void inclusions)

Add inclusions interactively to avoid violating the Kuster and Tuksoz (1974) premises.

Elastic Moduli Boundaries

Composition

Dry to Saturated

Aspect Ratio Analysis Clay Sensitivity

SW Sensitivity

IP x Vp / Vs (Boundaries)

Composition	Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity	

Well A-10

Composition

Homogeneous Matrix

Dry to Saturated

Aspect Ratio Analysis

Clay Sensitivity

SW Sensitivity

SW: 0 to 100%

Gas Saturated Medium

SW: 0 to 100%

Gas Saturated Medium

```
RCP ©
```


α = 0.2 (average)

A-03. Dissolution of Feldspars and microfractures

Composition Homogeneous Matrix Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity
---	-----------------------	------------------	----------------

α = 0.15 (average)

A-03. Dissolution of Feldspars and microfractures

Composition	Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity
-------------	--------------------	------------------	-----------------------	------------------	----------------

α = 0.07 to 0.2

Best fit for the model (based on xplot analysis)

Composition Homogeneous Matrix Dry to Saturated Aspect Ratio Analysis Clay Sensitivity SW Sensitivity

Clay Analysis - VP

Composition Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity
--------------------------------	------------------	-----------------------	------------------	----------------

Clay Analysis - VS

Composition Homoger	neous Matrix Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity
---------------------	-------------------------------	-----------------------	------------------	----------------

Water Saturation Sensitivity

Composition	Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity

Composition	Homogeneous Matrix	Dry Frame	Aspect Ratio Analysis	Clav Sensitivity	SW Sensitivity

- Pre stack inversion is necessary to identify the gas zones
- The rock physics model based in the pore shape can model the seismic response of the tight sand of the Lajas Formation.

Conclusions and Future Works

Improve the model

- Effect of pressure on the Dry Frame
- Clays properties
- Bounded water (irreplaceable constituent of the matrix)

Ounta Rosada Fomation

Operation Prestack Inversion

Back-up slides

Kuster and Toksöz (1974) derived expressions for P- and S- wave velocities by using a long-wavelength first-order scattering theory. A generalization of their expressions for the effective moduli K_{KT}^* and μ_{KT}^* for a variety of inclusion shapes can be written as (Kuster and Toksöz, 1974; Berryman, 1980b)

$$(K_{\rm KT}^* - K_{\rm m}) \frac{\left(K_{\rm m} + \frac{4}{3}\mu_{\rm m}\right)}{\left(K_{\rm KT}^* + \frac{4}{3}\mu_{\rm m}\right)} = \sum_{i=1}^N x_i (K_i - K_{\rm m}) P^{{\rm m}i}$$
$$(\mu_{\rm KT}^* - \mu_{\rm m}) \frac{(\mu_{\rm m} + \zeta_{\rm m})}{\left(\mu_{\rm KT}^* + \zeta_{\rm m}\right)} = \sum_{i=1}^N x_i (\mu_i - \mu_{\rm m}) Q^{{\rm m}i}$$

where the summation is over the different inclusion types with volume concentration x_i , and

$$\zeta = \frac{\mu}{6} \frac{(9K + 8\mu)}{(K + 2\mu)}$$

DCDØ

eas

TABLE 4.7.1. Coefficients *P* and *Q* for some specific shapes. The subscripts m and i refer to the background and inclusion materials [from Berryman (1995)].

Inclusion Shape	P^{mi}	$Q^{{\mathfrak m} i}$
Spheres	$\frac{K_{\rm m} + \frac{4}{3}\mu_{\rm m}}{K_i + \frac{4}{3}\mu_{\rm m}}$	$\frac{\mu_{\rm m}+\zeta_{\rm m}}{\mu_i+\zeta_{\rm m}}$
Needles	$\frac{K_{\rm m} + \mu_{\rm m} + \frac{1}{3}\mu_i}{K_i + \mu_{\rm m} + \frac{1}{3}\mu_i}$	$\frac{1}{5}\left(\frac{4\mu_{\rm m}}{\mu_{\rm m}+\mu_i}+2\frac{\mu_{\rm m}+\gamma_{\rm m}}{\mu_i+\gamma_{\rm m}}+\frac{K_i+\frac{4}{3}\mu_{\rm m}}{K_i+\mu_{\rm m}+\frac{1}{3}\mu_i}\right)$
Disks	$\frac{K_{\rm m}+\frac{4}{3}\mu_i}{K_i+\frac{4}{3}\mu_i}$	$\frac{\mu_{\rm m}+\zeta_i}{\mu_i+\zeta_i}$
Penny cracks	$\frac{K_{\rm m} + \frac{4}{3}\mu_i}{K_i + \frac{4}{3}\mu_i + \pi\alpha\beta_{\rm m}}$	$\frac{1}{5}\left(1+\frac{8\mu_{\mathrm{m}}}{4\mu_{i}+\pi\alpha(\mu_{\mathrm{m}}+2\beta_{\mathrm{m}})}+2\frac{K_{i}+\frac{2}{3}(\mu_{i}+\mu_{\mathrm{m}})}{K_{i}+\frac{4}{3}\mu_{i}+\pi\alpha\beta_{\mathrm{m}}}\right)$

RCP © In pursuit of new ideas

1 km

α = 0.01 (average)

A-06. Microfractures

Composition	Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity

Foto 16: RN 1007 3620 x4 compactación.; crecimiento secundario de cuarzo.

Foto 134 RN 1040 3332,50 x10 voids ocluidos con materia orgánica.

Foto 139 RN 252 3397,38 x4XN materia orgánica en fracturas.

Water Saturated media

 $\alpha = 0.1$ All well points

Composition Homogeneous Matrix Dry to Saturated Aspect Ratio Analysis Clay Sensitivity SW Sensitivity

Water Saturated media

 $\alpha = 0.1$ Well Points = Gas saturated

Composition	Homogeneous Matrix	Dry to Saturated	Aspect Ratio Analysis	Clay Sensitivity	SW Sensitivity	

Clay Analysis

|--|

Clay Analysis

|--|

