

RESERVOIR CHARACTERIZATION PROJECT

North Sea 4D

Sima Daneshvar, Payson Todd 11/15/19

Project Summary

• Area : Edvard Grieg oil field, Norwegian North Sea

o Data

- 2016 / 2018 OBC 3C 4D seismic data provided by Lundin Norway
- 12 Wells

• Primary Research Goals:

- Evaluate potential benefits of PS data in characterizing reservoir heterogeneity and effects of development with 4D Pre-stack Joint PP/PS Inversion – April 2020, Sima Daneshvar
- Evaluate use of PP/PS HTI Anisotropy inversion for Geomechanics and Well Planning January 2021, Payson Todd
- Dynamic Reservoir Properties from Pre-Stack Joint PP/PS Inversion, Constrain and Update Simulation Model - December 2021, Payson Todd

Project Summary

• Area : Edvard Grieg oil field, Norwegian North Sea

o Data

- 2016 / 2018 OBC 3C 4D seismic data provided by Lundin Norway
- 12 Wells

• Primary Research Goals:

- Evaluate potential benefits of PS data in characterizing reservoir heterogeneity and effects of development with 4D Pre-stack Joint PP/PS Inversion – April 2020, Sima Daneshvar
- Evaluate use of PP/PS HTI Anisotropy inversion for Geomechanics and Well Planning January 2021, Payson Todd
- Dynamic Reservoir Properties from Pre-Stack Joint PP/PS Inversion, Constrain and Update Simulation Model - December 2021, Payson Todd

4D Simultaneous PP-PS Prestack Inversion

Motivation: Allows more reliable extraction of P-impedance, S-impedance, and potentially density.

Using only PP waves, good quality data at large angles are needed for a reliable S-impedance inversion or possibly density inversion, challenging particularly due to critical reflection at top chalk layer.

Goal: Improved static and dynamic reservoir model

Scenario	Detail	Al change %	PR change %
4. Pressure drop with gas breakout	Pressure down 500 psi, gas saturation 5%, max sensitivity, aeolian reservoir	-3	-12

Watts et al., 2016

S

NMO CDP Gather

Outline

- Background
- Oata
- OPreliminary Investigations
 - Rock Property Analysis
 - Amplitude QC
- Inversion
 - PP Post-Stack Inversion
 - Initial PP Pre-Stack Inversion

5ms above top reservoir, 30ms below*

Outline

Background

- Oata
- OPreliminary Investigations
 - Rock Property Analysis
 - Amplitude QC
- Inversion
 - PP Post-Stack Inversion
 - Initial PP Pre-Stack Inversion

5ms above top reservoir, 30ms below*

Norwegian North Sea: Edvard Grieg Field

- 180 km west of Stavanger in PL338.
- ~40 m (131 ft) column
 - undersaturated light oil with a GOR of around 702 SCF/BBL
- Field Timeline
 - > 2007: Discovered
 - 2015: Began Production
 - > 2016: Water injection
- Operator: Lundin Norway

Reservoir Architecture

- Multi-Source Reservoir: aeolian sands, alluvial sands and conglomerates, and shelfal sands
 - Aeolian sand holds more than 50% of reserves
 - Multi-Darcy permeability in aeolian, up to hundreds of mDarcy permeability in alluvial
- Overlain by high velocity Shetland Chalk

Reservoir Architecture

- Multi-Source Reservoir: aeolian sands, alluvial sands and conglomerates, and shelfal sands
 - Aeolian sand holds more than 50% of reserves
 - Multi-Darcy permeability in aeolian, up to hundreds of mDarcy permeability in alluvial
- Overlain by high velocity Shetland Chalk

Reservoir Architecture

- Multi-Source Reservoir: aeolian sands, alluvial sands and conglomerates, and shelfal sands
 - Aeolian sand holds more than 50% of reserves
 - Multi-Darcy permeability in aeolian, up to hundreds of mDarcy permeability in alluvial
- Overlain by high velocity Shetland Chalk

Outline

Background

Oata

OPreliminary Investigations

- Rock Property Analysis
- Amplitude QC
- Inversion
 - PP Post-Stack Inversion
 - Initial PP Pre-Stack Inversion

5ms above top reservoir, 30ms below*

2016 / 2018 4D OBC survey

WesternGeco, 2018

PS Data

Whitebread 2018

Outline

- Background
- Oata

OPreliminary Investigations

- Rock Property Analysis
- Amplitude QC
- Inversion
 - PP Post-Stack Inversion
 - Initial PP Pre-Stack Inversion

5ms above top reservoir, 30ms below*

Rock Physics Approach: Facies Separability

• Findings:

- Facies are separable in using P-Impedance and S-Impedance *in well log domain*
- Improved S-Impedance can be used to *better constrain* facies identification in reservoir

Outline

Background

Oata

OPreliminary Investigations

- Rock Property Analysis
- Amplitude QC
- Inversion
 - PP Post-Stack Inversion
 - Preliminary PP Pre-Stack Inversion

5ms above top reservoir, 30ms below*

Signal QC: RMS Amplitude Extractions

AVA QC

Outline

- Background
- O Data
- OPreliminary Investigations
 - Rock Property Analysis
 - Amplitude QC
- Inversion
 - PP Post-Stack Inversion
 - Preliminary PP Pre-Stack Inversion

5ms above top reservoir, 30ms below*

HRS Strat Inversion Workflow

Synthetic Post Stack Inversion

- "Best Case Scenario" for Post-Stack Inversion Result
 - 1D Smoothed Initial Model

Synthetic Post Stack Inversion

- "Best Case Scenario" for Post-Stack Inversion Result
 - 1D Smoothed Initial Model

1D Smoothed Initial Model Zp (m/s*g/cc) SYN Real Misfit 12000 3000 50ms Chalk► Reservoir Alluvial

Synthetic Post Stack Inversion

"Best Case Scenario" for Post-Stack Inversion Result

•

Synthetic Post Stack Inversion

Post-Stack Inversion Real Data: 1 Well

In pursuit of new ideas

Field Outling

12000

10000

8000

6000

4000 38

"Best" Post-Stack Inversion Result

- 5 Variable Facies Wells for Initial Low Frequency Model
 - Lowest misfit in reservoir unit
 - Characterizes base and top reservoir
- For laterally variable geology, sufficient representative wells should be included in the LFBM to adequately sample heterogeneity

In pursuit of new ideas

Field Outling

Reservoir RMS

0.40 0.30 0.20 0.10

HRS Strat Inversion Workflow: Prestack PP

Prestack Inversion Residual Moveout

Initial PP Inversion Observation

- Pre-Stack PP inversion is able to capture sharper impedance changes
- Pre-Stack data contains more noise, residual move out, needs conditioning to improve results

In pursuit of new ideas

Prestack Zp

Conclusion

- Changes in S-Impedance can help characterize variable reservoir facies and the reservoir response to development in Edvard Grieg
- Fields that vary facies laterally require multiple representative well logs for the initial model input to sample heterogeneity
 - 5 well logs produces best PP inversion result for Edvard Grieg
- Pre-Stack PP inversion better characterizes low impedance reservoir and overlying chalk

Gather conditioning to remove residual moveout

• Further QC of inversion results

OPS Inversion and Registration

 Joint 4D PP/PS inversion to ultimately evaluate PS data benefits in characterizing heterogeneity and development effects

Per Eivind Dhelie, Lundin Norway AS Emilie Davenne, Lundin Norway AS

The partners in PL338 Edvard Grieg, OMV and Wintershall

Vp/Vs vs. Impedance

- Vp/Vs correlates with conglomerate porosity
- Both P-Impedance and S-Impedance help distinguish reservoir quality

Varying Initial Models:Prestack

Reservoir Wedge Model: 17m Resolution

Using statistical on UDD data 1500-2000ms window

Chalk Wedge Model: 22m Peak Tuning

Wedge Model: 22m Peak Tuning, Begins Tuning at 50m from interfering internal carbonate units in chalk

55

"Common" OWC: 1939mTVDSS

Lateral Variability in Wavelet 500ms window around reservoir

Wavelet Variability: Deterministic 16/1-13

Tests

- 1. Potential Issues with Stack
- 2. Transmission Issues
- 3. Time-Depth Relationship

Angle Stack Check

With Varying Angle Range

Full Stack

Transmission Issue Check

Full Stack

Time-Depth

 Time shifts in base reservoir from deviations in velocity model may translate into phase shift in extracted wavelet

Wavelet Variability: Statistical

- Wavelet sidelobes become unusual with depth- transmission issues
- However statistical wavelet can still capture reservoir zone in well reasonably well given phase
 - Trouble in base reservoir

With Depth Range

Time-Depth Relationship Check: Well E

.953 CC Wavelet: Deterministic 180ms BP

.871CC Wavelet: Statistical 180ms BP

Wavelet Variability: Deterministic 16/1-13

Tests

- 1. Time-Depth Relationship
- 2. Potential Issues with Stack
- 3. Transmission Issues
- Conclusion: Utilize a Statistical Wavelet
 - Statistical still correlates with log
 - All other wells are close to zero phase
 - Velocity Model variation in non-zero phase well

Simple Block Model

Expected Top Reservoir AVA

Q-Seabed Cables, WesternGeco

- Source boat + Receiver towing boat
- Reciever tows a max of 4 cables
- Conventional geophones in previous OBC systems are replaced by geophone accelerometers(GAC) that have an improved frequency response for low and high frequency end of the spectrum

Using the Velocity Model for LFBM

