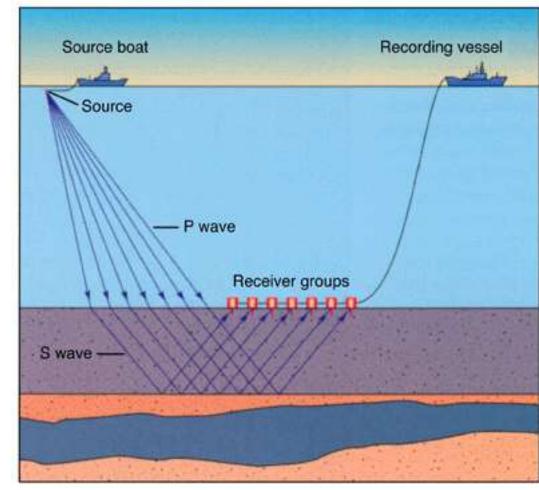


RESERVOIR CHARACTERIZATION **PROJECT**

Seismic Deblending: an Experiment with an Offshore Seismic Acquisition

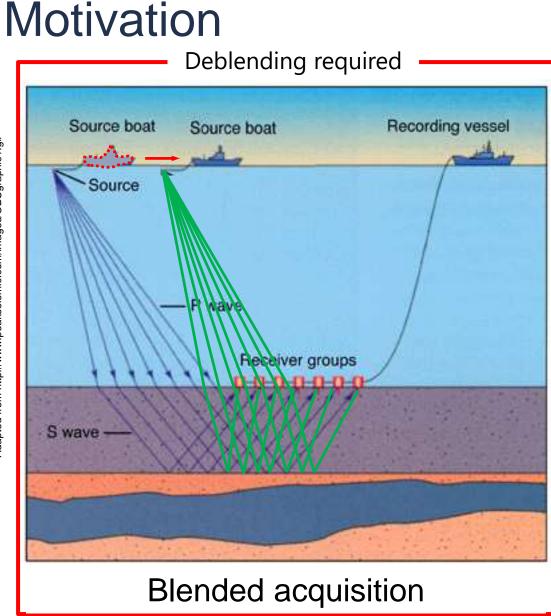
Max Velasques

Motivation



The cost of a seismic acquisition is proportional to the time required to acquire the data;

Conventional OBS



- The cost of a seismic acquisition is proportional to the time required to acquire the data;
- Acquire data faster has the potential do decrease the costs

How will blending noise and deblending procedures affect 4D analysis?

Objective

- Theoretical background
 - Blending
 - Deblending

Results

- Synthetic data
- Field data
- Final remarks
- Next steps

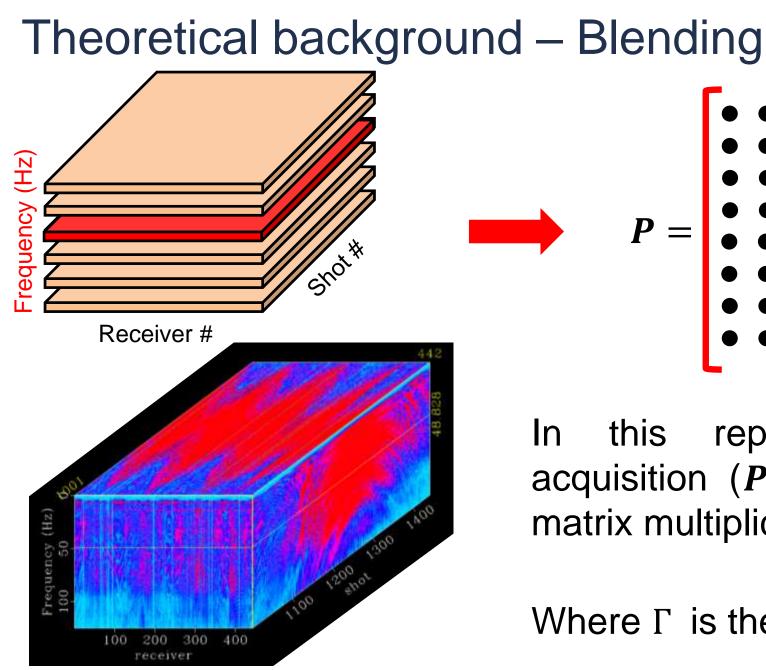
Objective

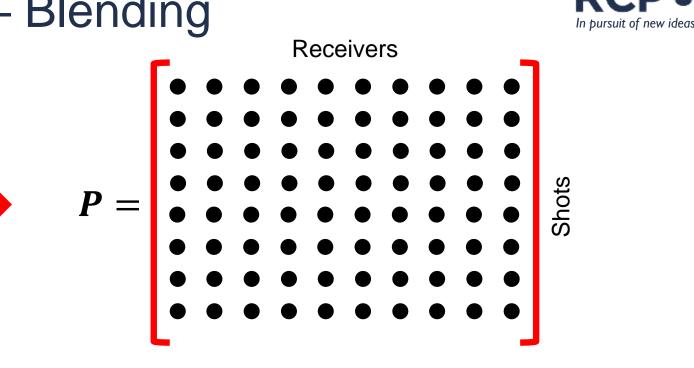
- Theoretical background
 - Blending
 - Deblending
- A Results
 - Synthetic data
 - Field data
- Final remarks
- Next steps

- Simulate an 4D offshore blended PRM seismic acquisition (using synthetic and Field data);
- Implement, apply and compare different deblending techniques on those datasets;
- Analyze how blending noise affects the 4D signal.

Objective

- O Theoretical background
 - Blending
 - Deblending
- A Results
 - Synthetic data
 - Field data
- Final remarks
- Next steps





In this representation, a blending acquisition (P') can be described as a matrix multiplication:

```
P' = \Gamma P
```

Where Γ is the Blending operator

 $f(t-\tau)$ f(t)Û $F(\omega)e^{-i\omega\tau}$ $F(\omega)$ "linear phase" encoding

Theoretical background – Blending

How does it work?

 $P' = \Gamma P$

In off-shore acquisitions the most common blending approach is the "**linear phase**" encoding, which is described as random time shifts between shots.

9

How does it work?

 $P' = \Gamma P$

And the matrix " Γ " takes the form:

$$\Gamma_{kl} = e^{-i\omega\tau_{kl}}$$
, where τ_{kl} is the firing time.

For example: An acquisition with 8 shots and 8 receivers, where **2 sequential shots were acquired together**:

$$\Gamma_{S2} = \underbrace{\begin{pmatrix} e^{-i\omega\tau_1} & e^{-i\omega\tau_2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{-i\omega\tau_3} & e^{-i\omega\tau_4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-i\omega\tau_5} & e^{-i\omega\tau_6} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e^{-i\omega\tau_7} & e^{-i\omega\tau_8} \end{pmatrix}}_{0 = 0}$$

How does it work?

 $P' = \Gamma P$

And the matrix " Γ " takes the form:

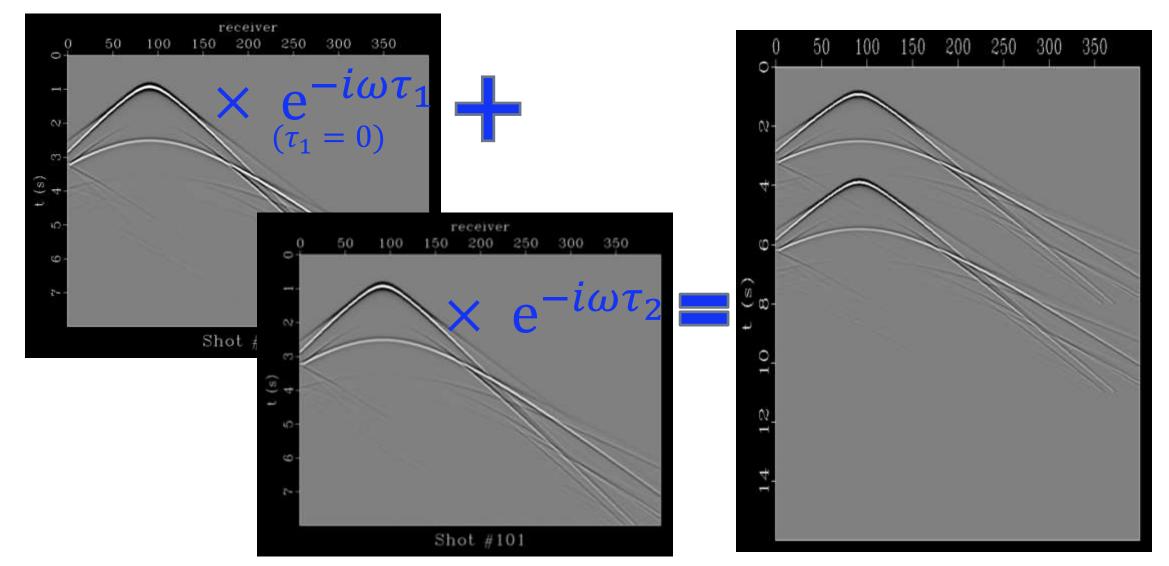
$$\Gamma_{kl} = e^{-i\omega\tau_{kl}}$$
, where τ_{kl} is the firing time.

For example: An acquisition with 8 shots and 8 receivers, where **4 sequential shots were acquired together**:

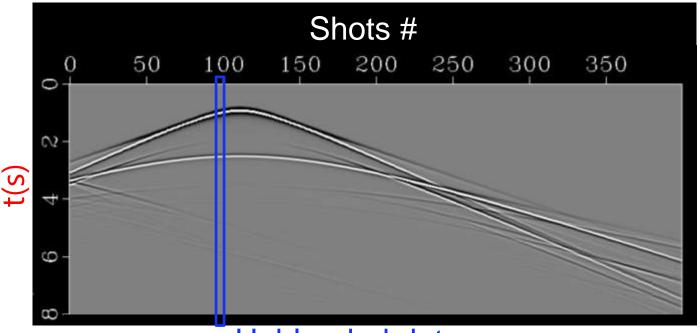
$$\Gamma_{S4} = \begin{pmatrix} e^{-i\omega\tau_1} & e^{-i\omega\tau_2} & e^{-i\omega\tau_3} & e^{-i\omega\tau_4} & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{-i\omega\tau_5} & e^{-i\omega\tau_6} & e^{-i\omega\tau_7} & e^{-i\omega\tau_8} \end{pmatrix}$$

12

Example – 2 sources (Shot domain)

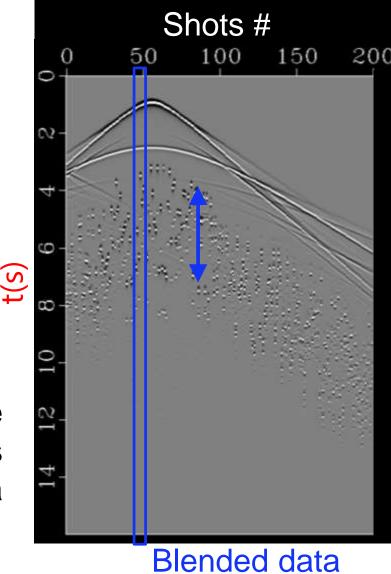


Example – 2 sources (Receiver domain)



Unblended data

The firing times (τ_{kl}) should be random at some level/interval to make the deblending process achievable in a domain where the blended data becomes random.



Objective

- Theoretical background
 - Blending
 - Deblending
 - Methods
 - Iterative estimation and subtraction of blending noise
- A Results
 - Synthetic data
 - Field data
- Final remarks
- Next steps

Filtering

Pure denoise methods

- Inversion (based on sparse solutions)
 - Iterative estimation and subtraction of blending noise \checkmark
 - The compressive sensing approach

OMOTIVATION

- Objective
- Theoretical background
 - Blending
 - Deblending
 - Methods
 - Iterative estimation and subtraction of blending noise
- A Results
 - Synthetic data
 - Field data
- Final remarks
- Next steps

Considering the matrix representation for a blending acquisition (*P*') as: $P' = \Gamma P$

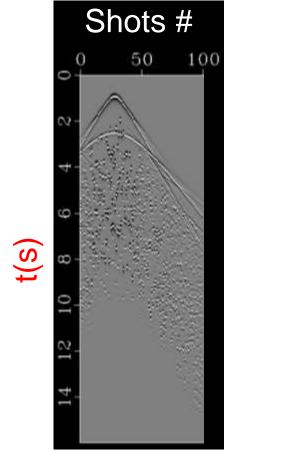
The deblending procedure would be represented by a matrix inversion:

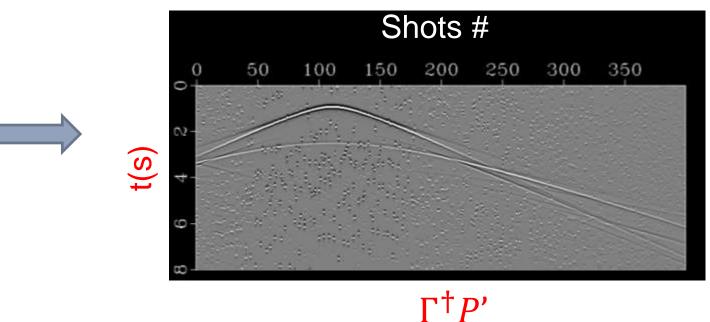
In this case, we will look for the least-squares solution:

BLENDING NOISE – 100 shot records with 4 sources (Receiver domain)

Blended receiver gather

Receiver gather after LS solution



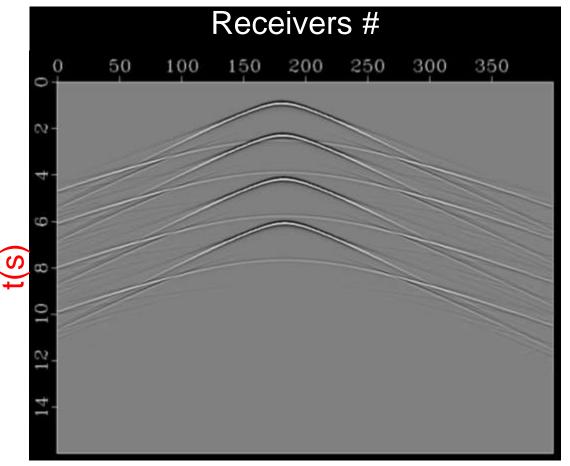


Decompression

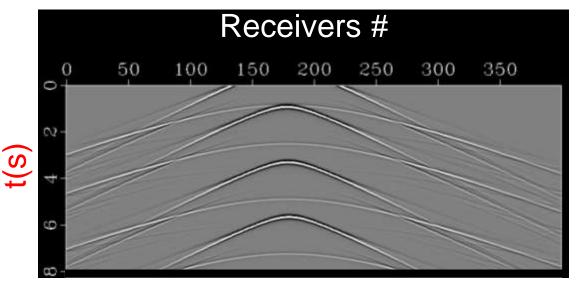
100 records (with 4 sources by record) to 400 shots

<u>BLENDING NOISE</u> – 100 shot records with 4 sources (Shot domain)

Blended shot gather



Shot gather after LS solution



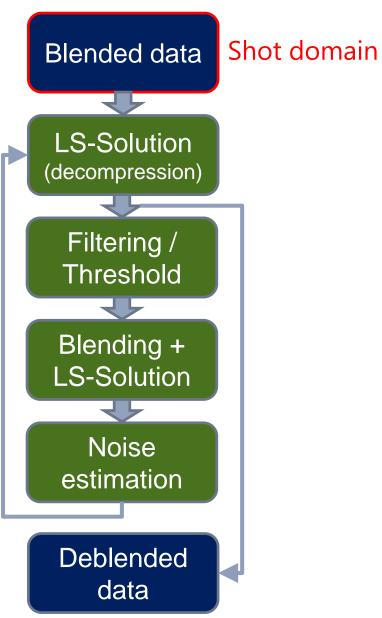
 $\Gamma^{\dagger}P'$

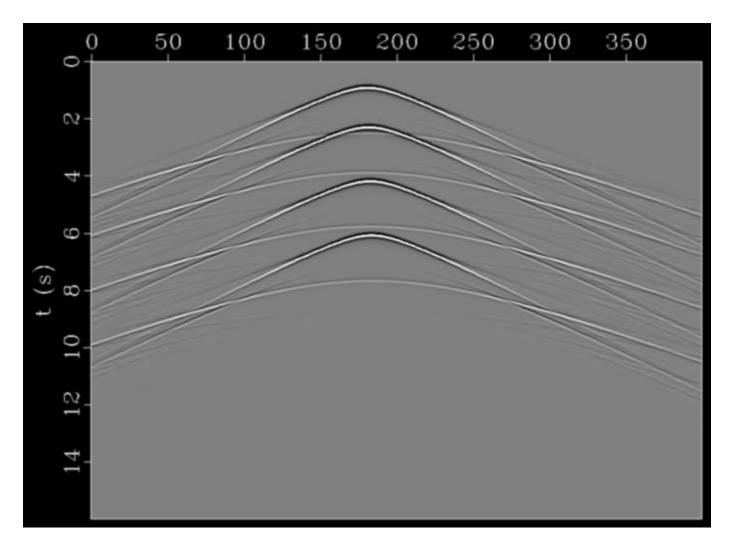
Additional constrains should be imposed:

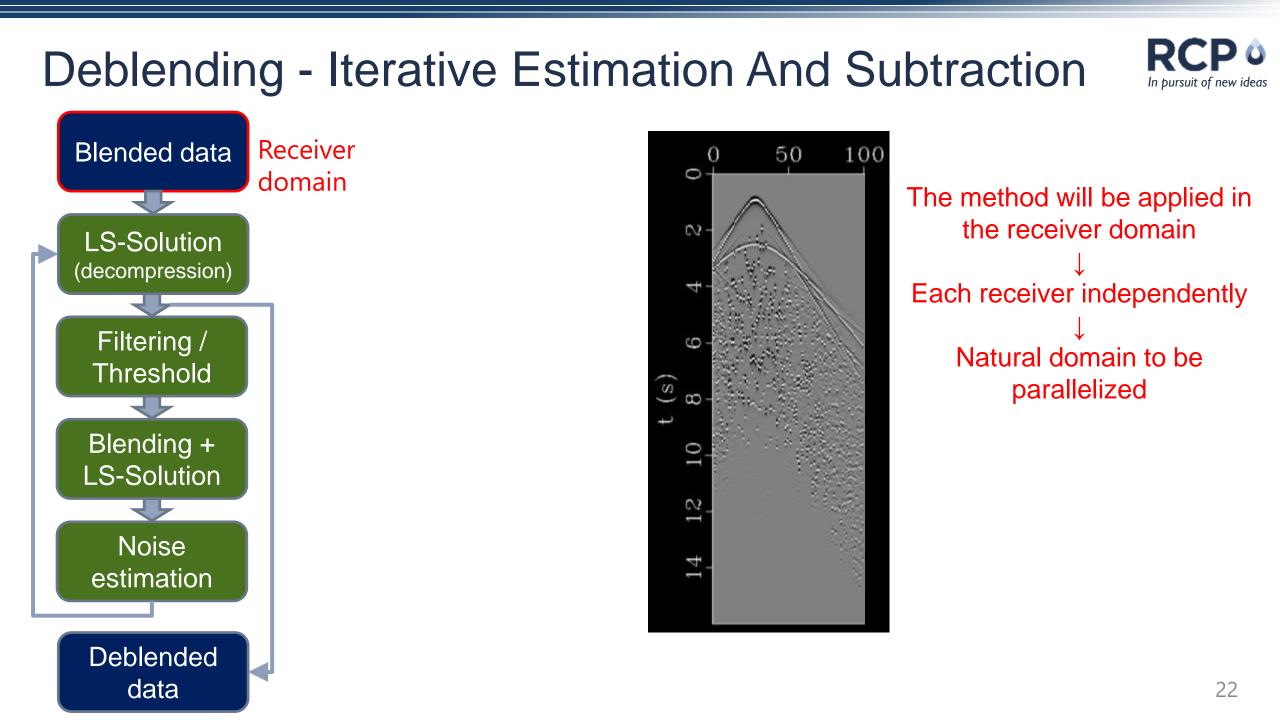
Since this problem quickly becomes intractable, a iterative solution will be considered:

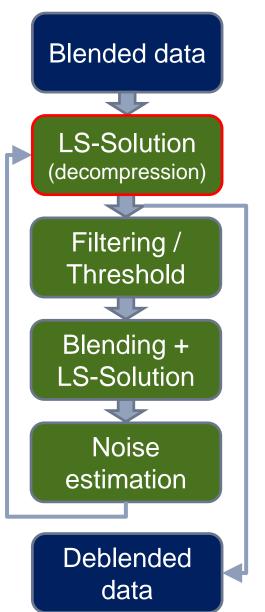
$$P_{i+1} = \Gamma^{\dagger} P' - [\Gamma^{\dagger} \Gamma - I] T(P_i)$$

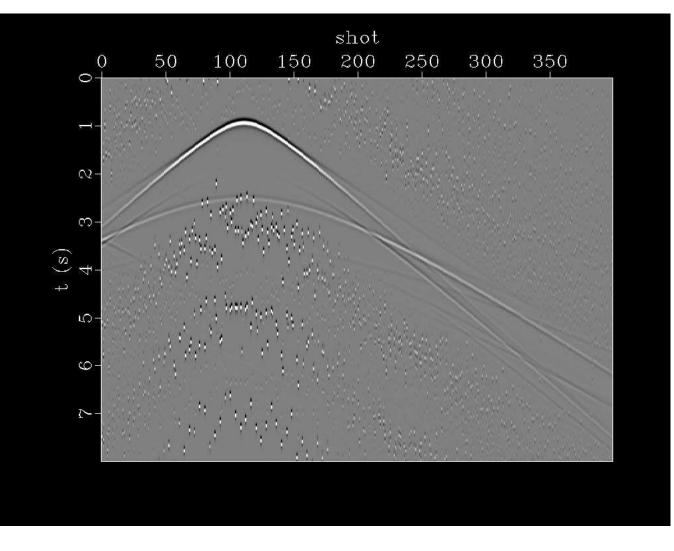
Blending noise for ith iteration Where T(.) is a sparsity-promoting operator (Threshold/Filtering)



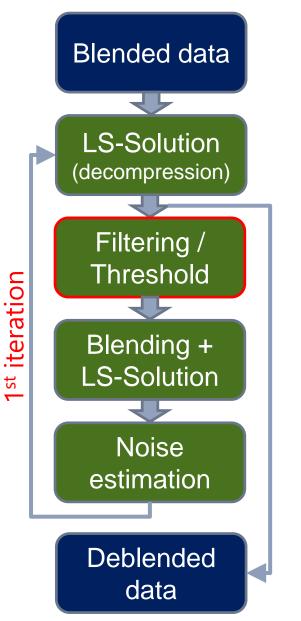


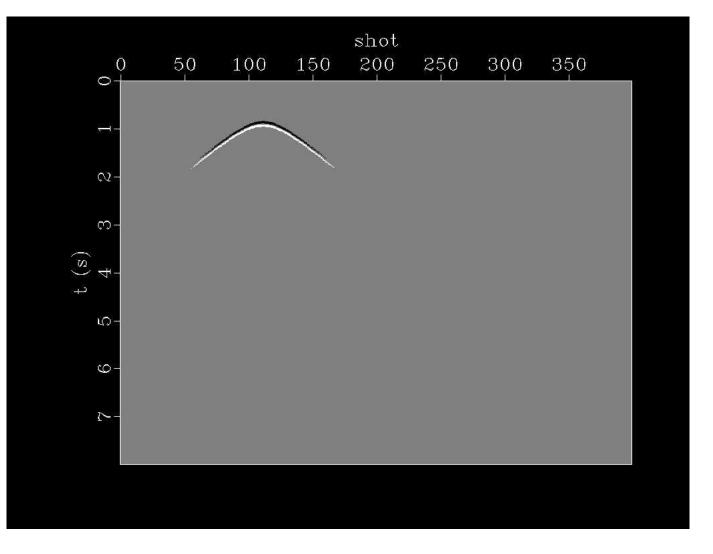




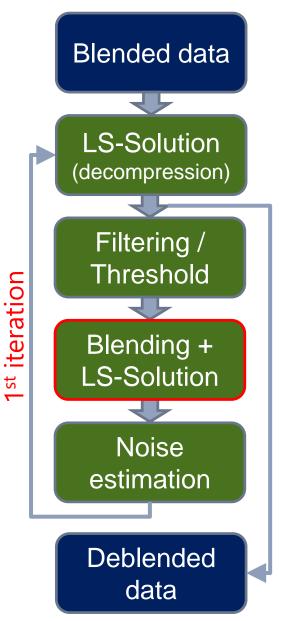


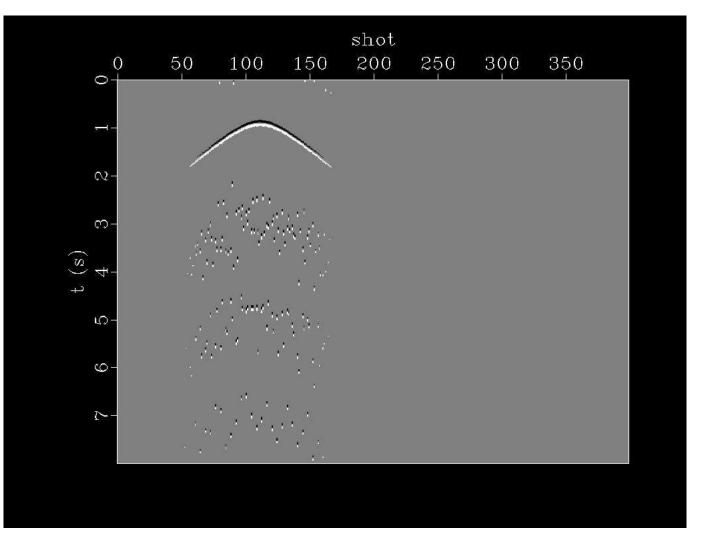
$$P_{i+1} = \Gamma^{\dagger} P' - \left[\Gamma^{\dagger} \Gamma - I\right] T(\underline{P_i})$$



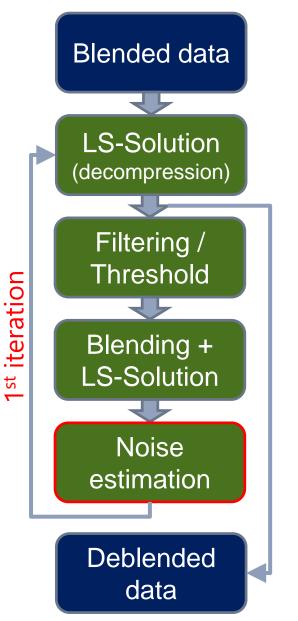


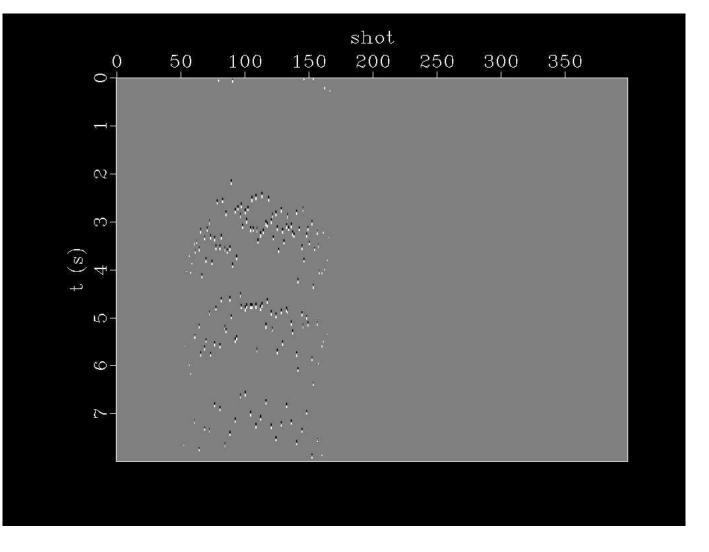
$$P_{i+1} = \Gamma^{\dagger} P' - [\Gamma^{\dagger} \Gamma - I] T(P_i)$$



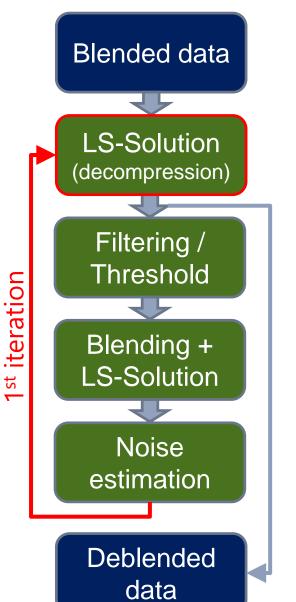


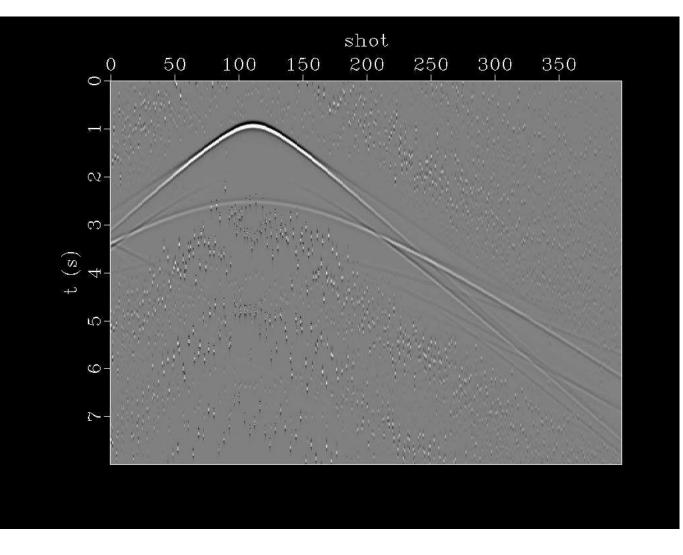
$$P_{i+1} = \Gamma^{\dagger} P' - [\Gamma^{\dagger} \Gamma - I] T(P_i)$$



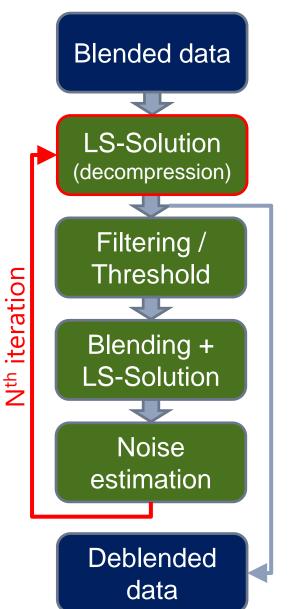


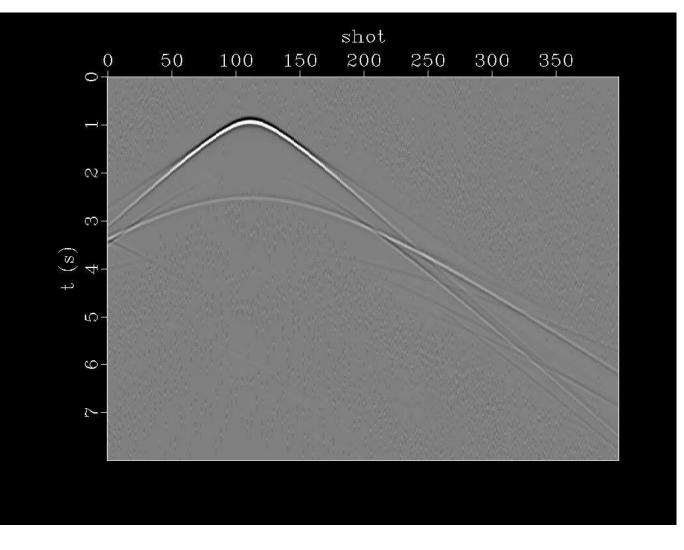
$$P_{i+1} = \Gamma^{\dagger} P' - [\Gamma^{\dagger} \Gamma - I] T(P_i)$$



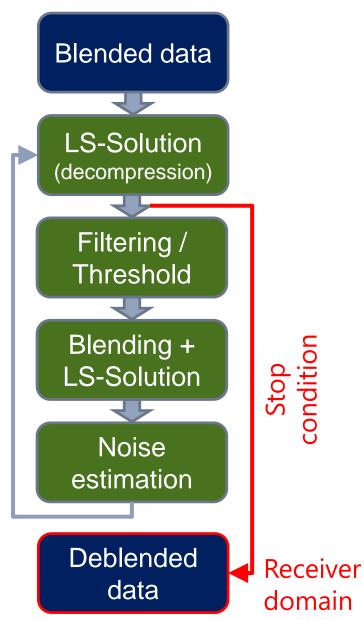


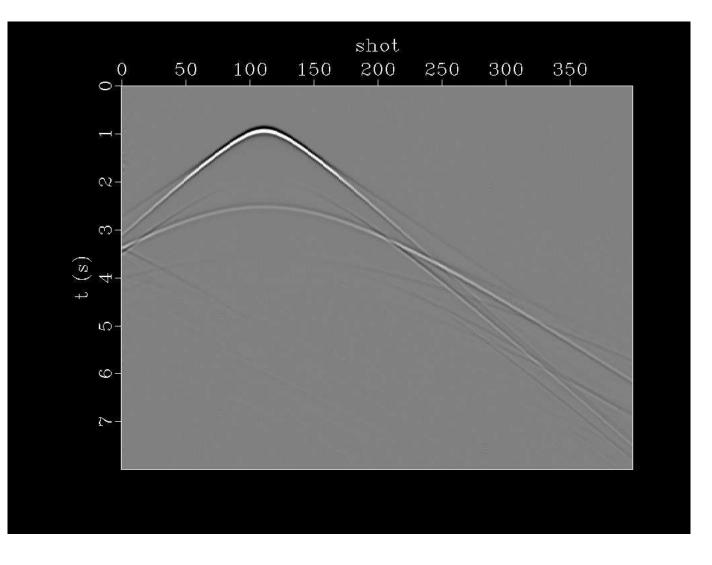
$$P_{i+1} = \Gamma^{\dagger} P' - [\Gamma^{\dagger} \Gamma - I] T(P_i)$$

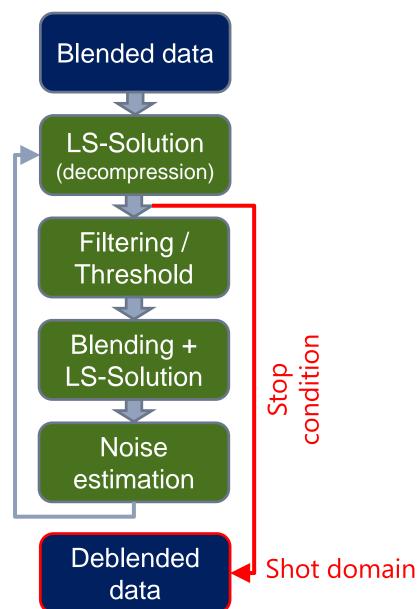


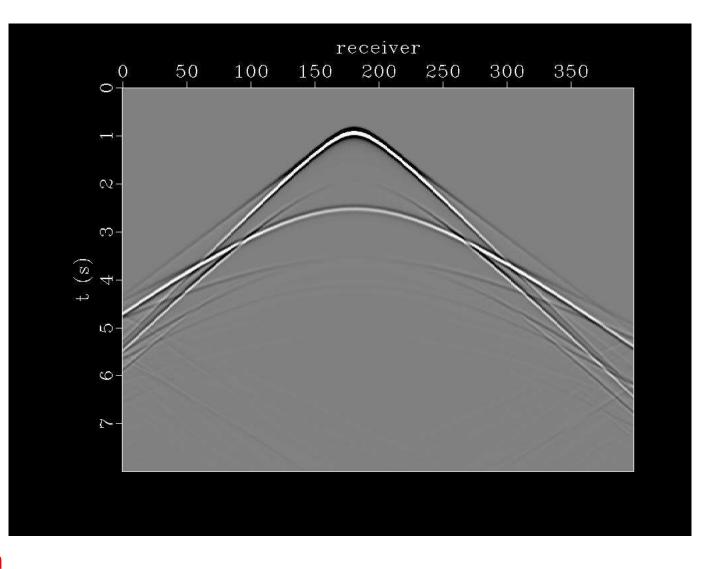


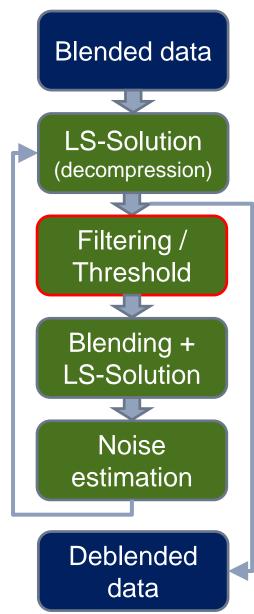
$$P_{i+1} = \Gamma^{\dagger} P' - [\Gamma^{\dagger} \Gamma - I] T(P_i)$$

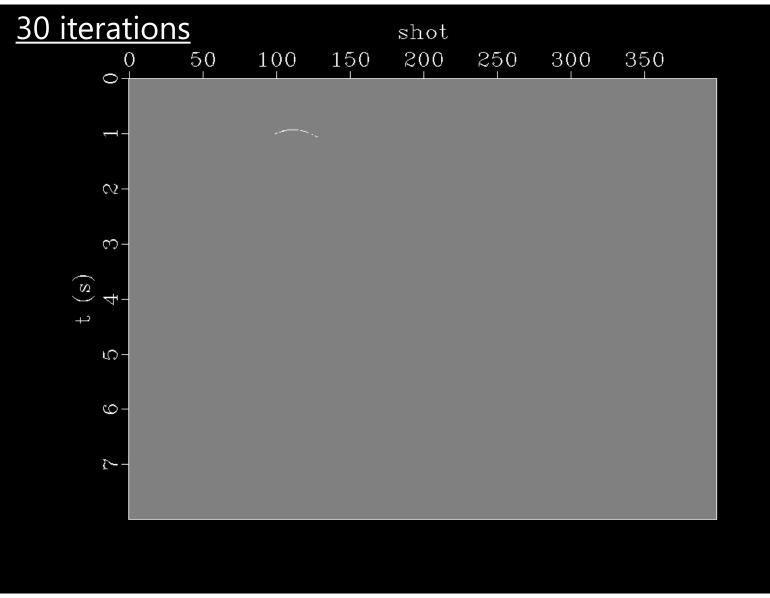


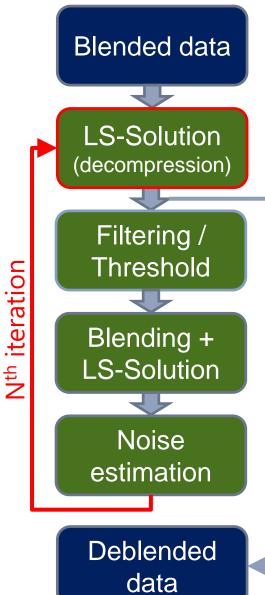


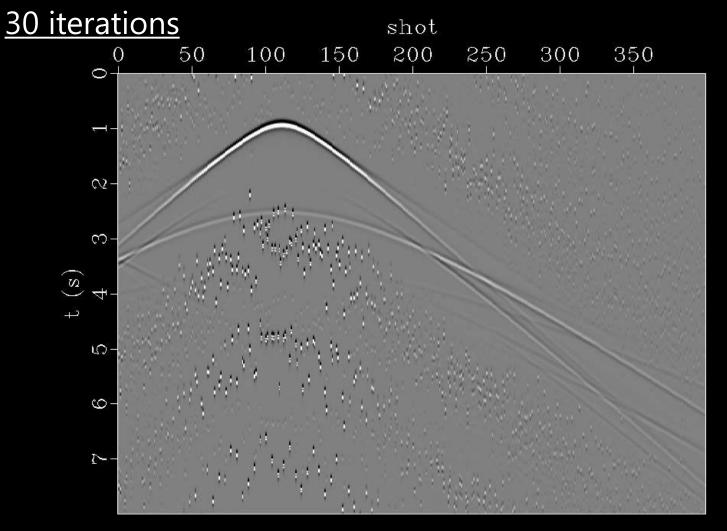












RCP ©

Objective

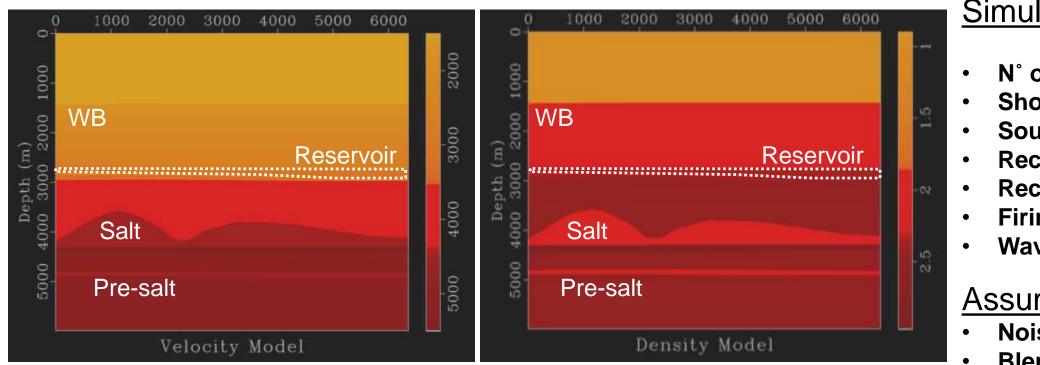
- Theoretical background
 - Blending
 - Deblending

Results

- Synthetic data
- Field data
- Final remarks
- Next steps

Results – Synthetic data (Modeling)

2D Synthetic model with Jubarte field properties



- Simulation:
- N° of sources/record = 4
- **Shot int.** = 25 m
- Source depth = 10 m
- **Rec. depth** = 1430 m
- **Record length** = 10 sec
- **Firing int.** = 2.5 ± 0.4 sec
- Wavelet freq = 25 Hz

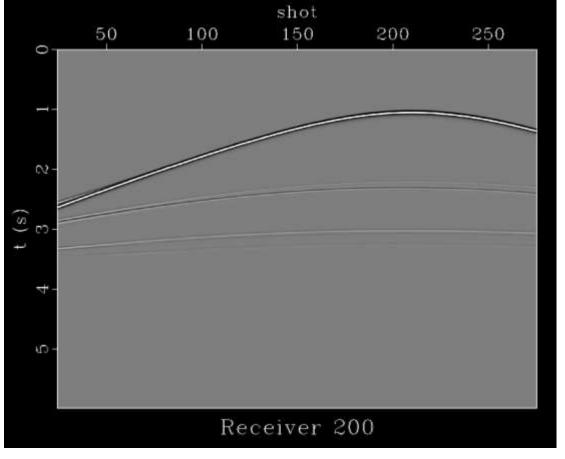
Assumptions:

- Noise free!
- Blending neighbor shots → one source ship with increased speed

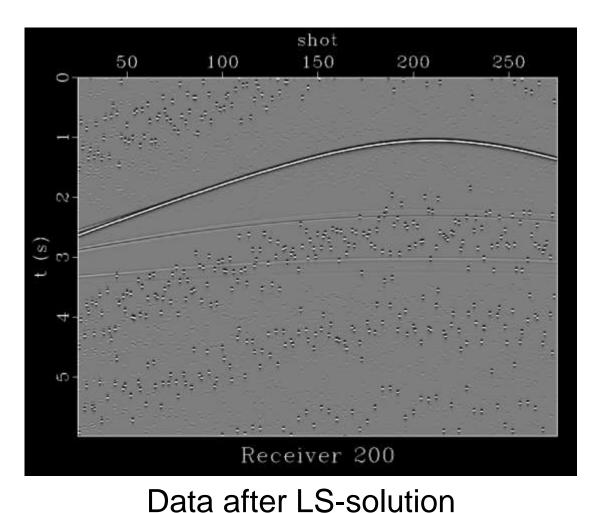
Comparative Analysis in the Receiver Domain

36

Results – Synthetic data (Receiver domain)

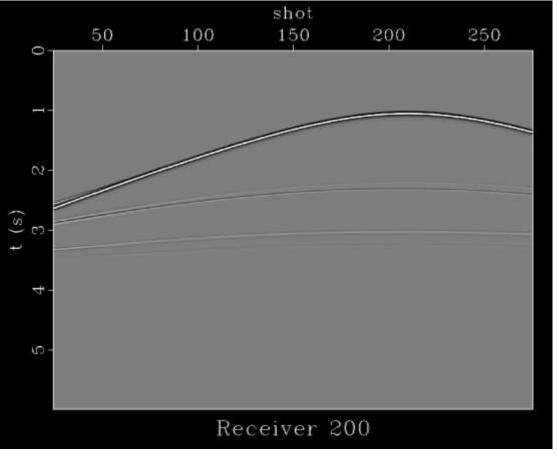


Original unblended data

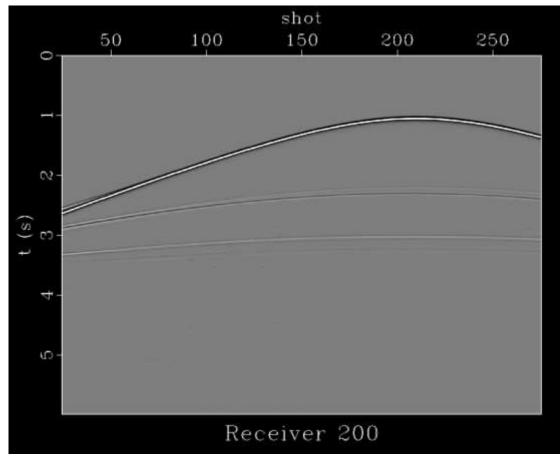


37

Results – Synthetic data (Receiver domain)

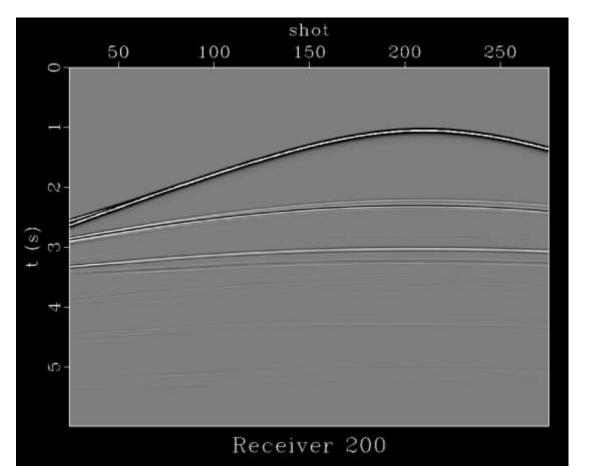


Original unblended data

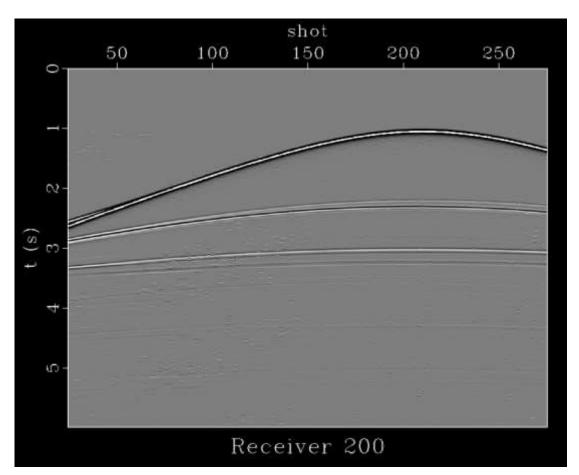


Deblended data after 30 iterations

Results – Synthetic data (Receiver domain)

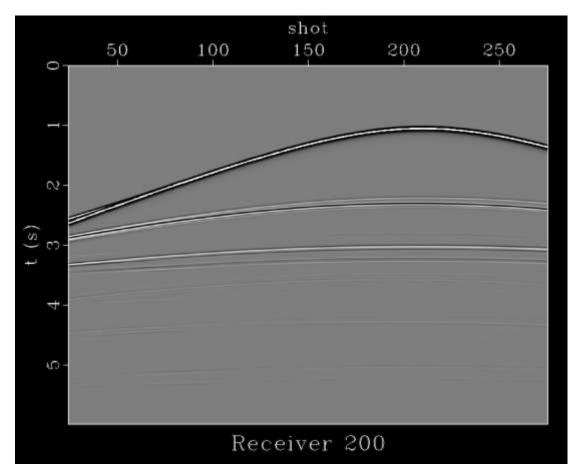


Original unblended data (with CLIPPING)

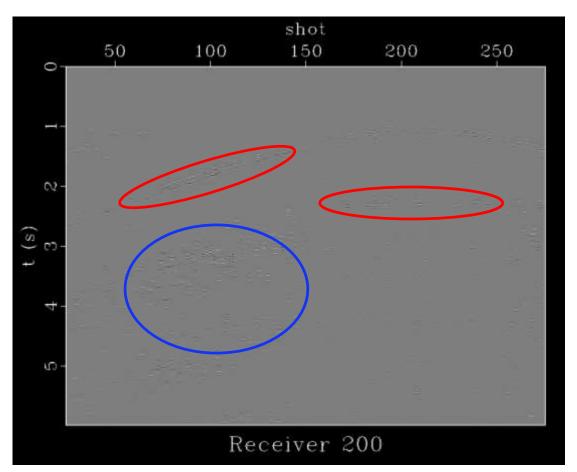


Deblended data after 30 iterations (with CLIPPING)

Results – Synthetic data (Receiver domain)

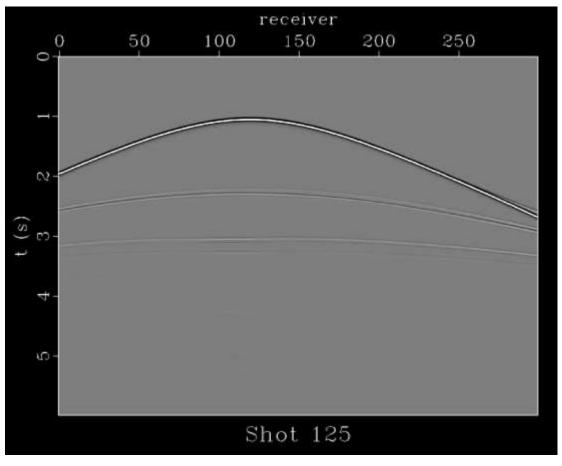


Original unblended data (with CLIPPING)

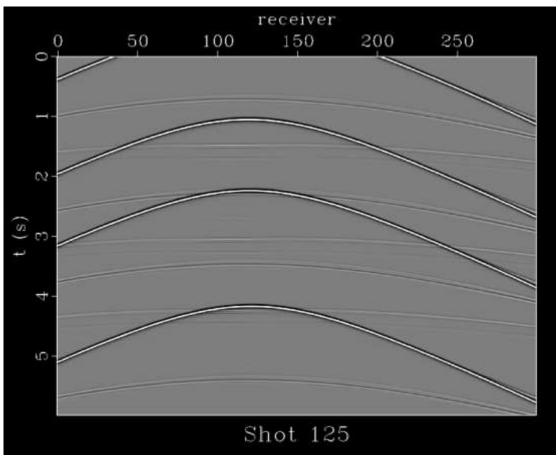


Deblending ERROR (with CLIPPING)

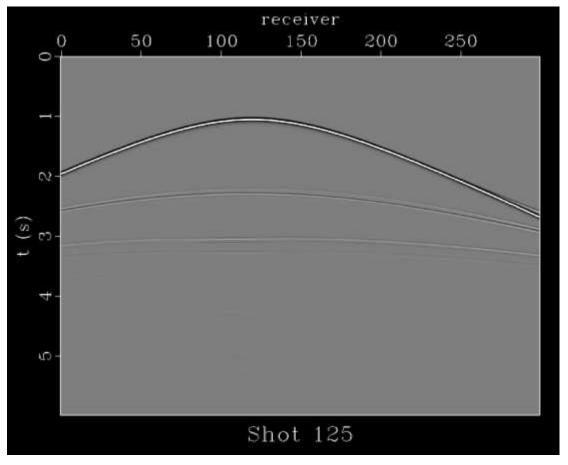
Comparative Analysis in the Shot Domain



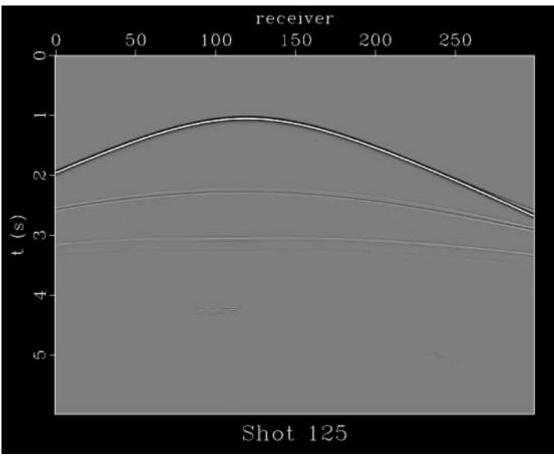
Original unblended data



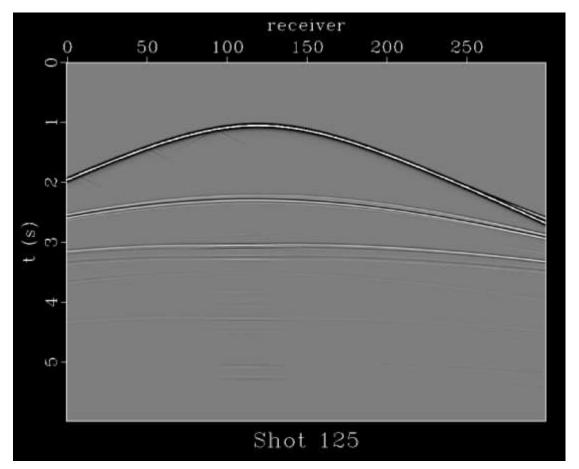
Data after LS-solution



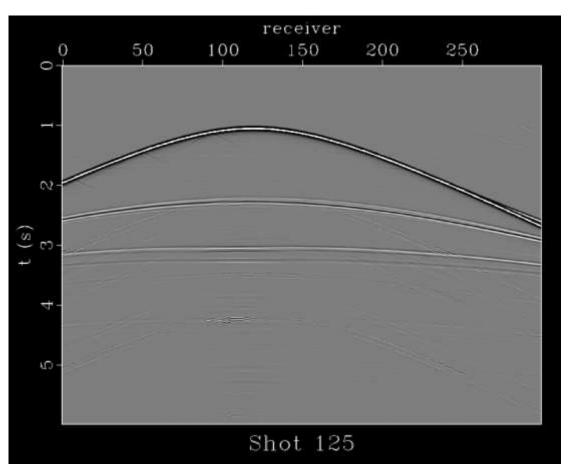
Original unblended data



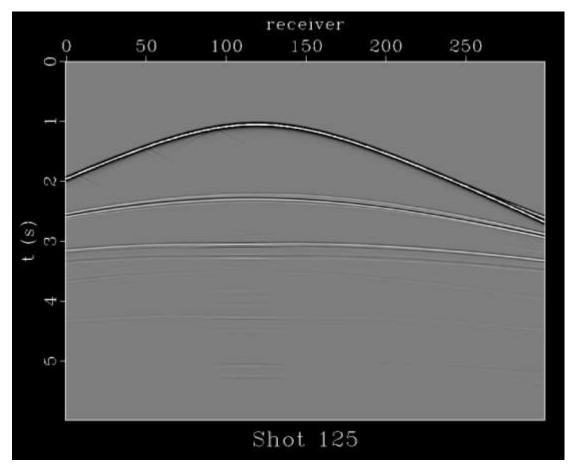
Deblended data after 30 iterations



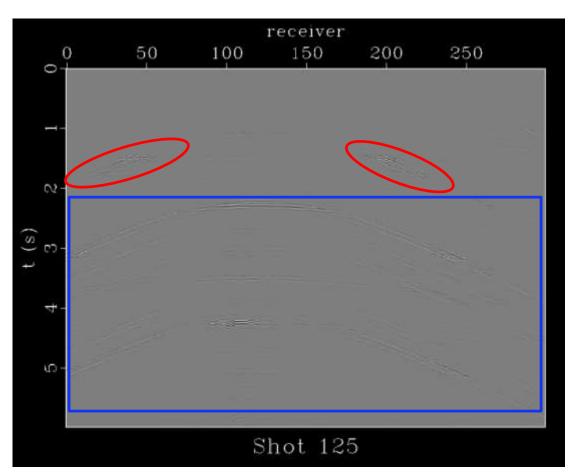
Original unblended data (with CLIPPING)



Deblended data after 30 iterations (with CLIPPING)



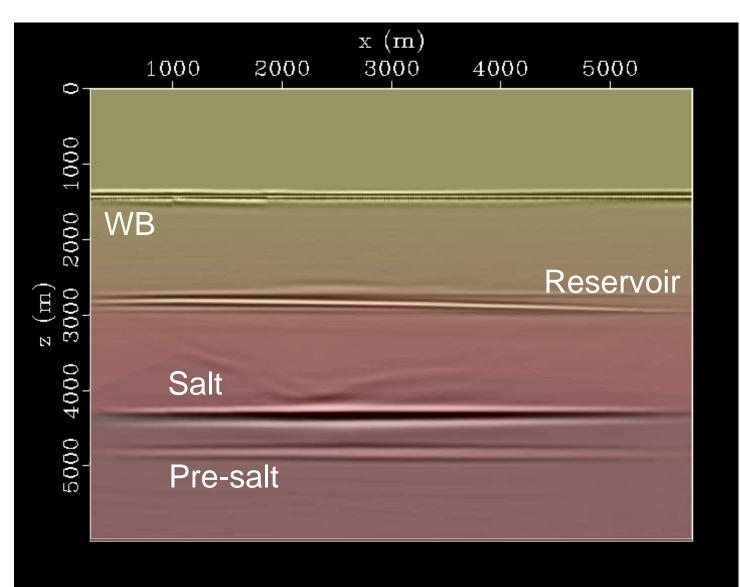
Original unblended data (with CLIPPING)

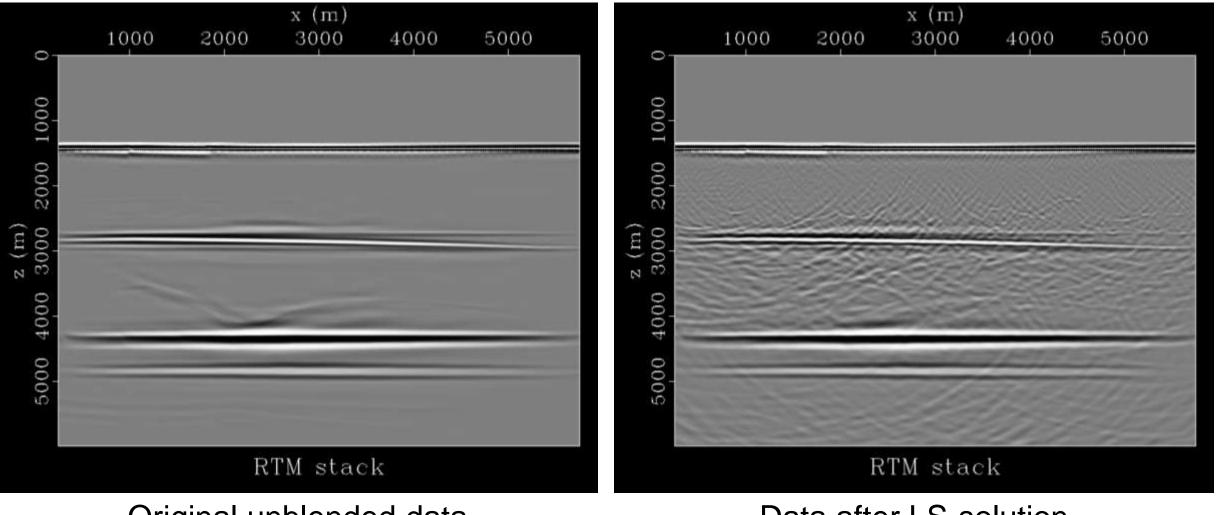


Deblending ERROR (with CLIPPING)

Comparative Analysis in the Image Domain – RTM (Quantitative analysis)

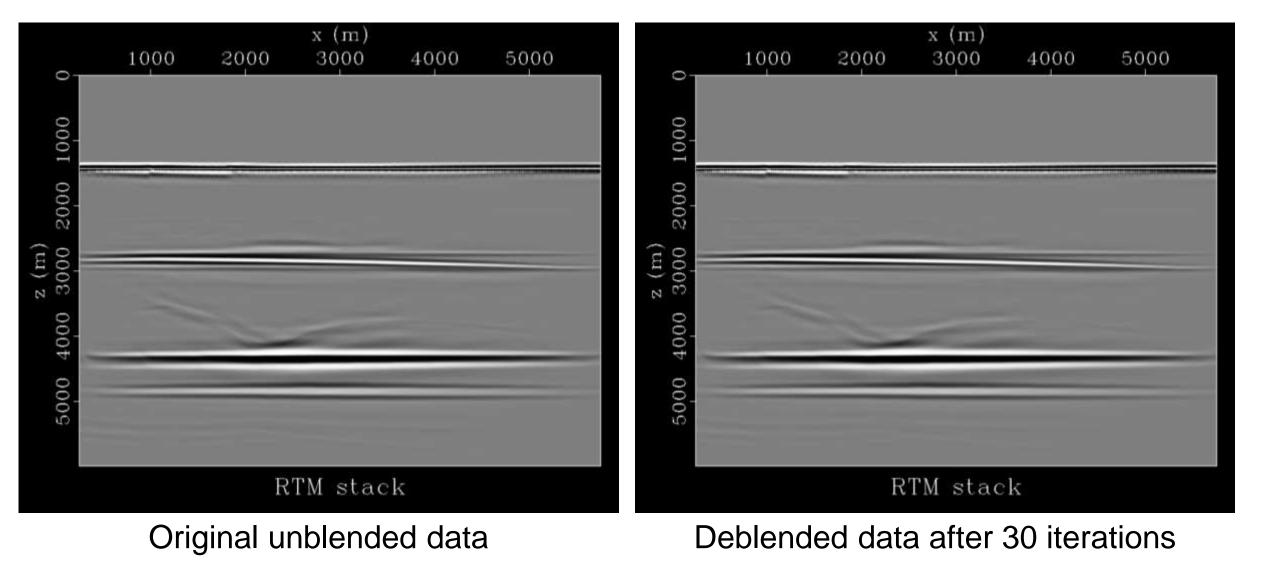
Results – Synthetic data (RTM & Velocity overlay) RCP ^O



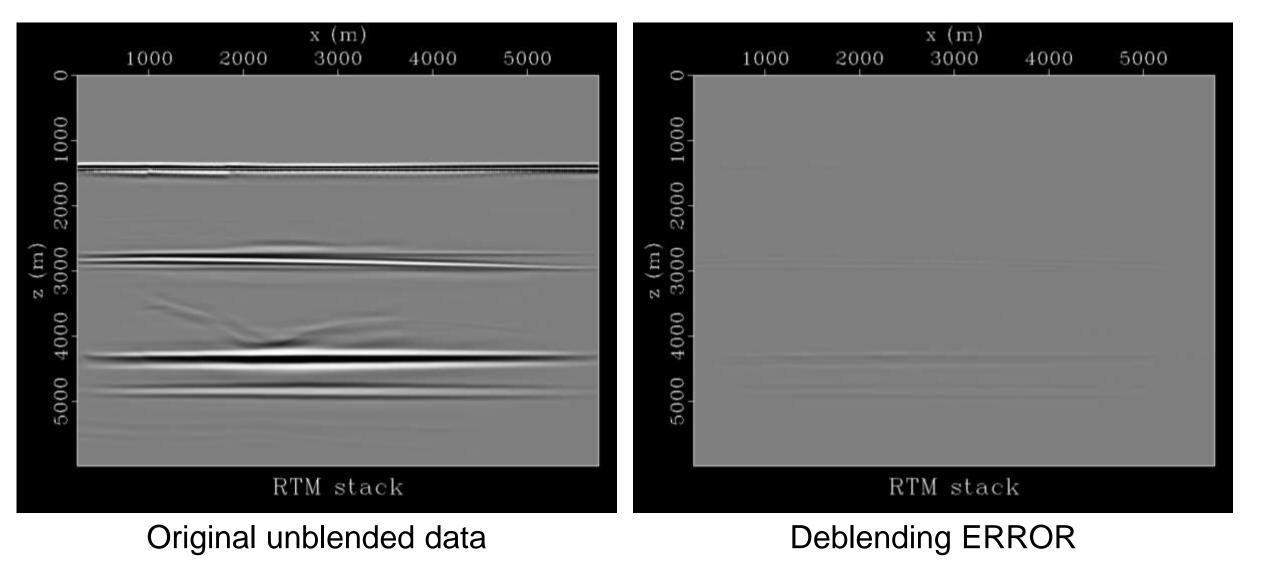


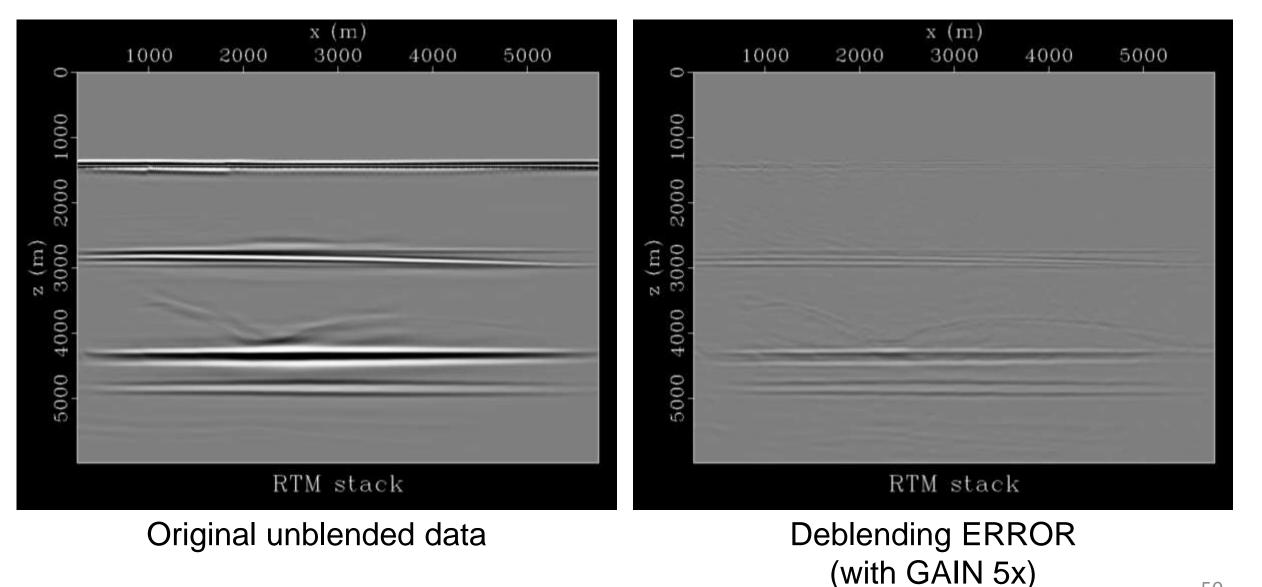
Original unblended data

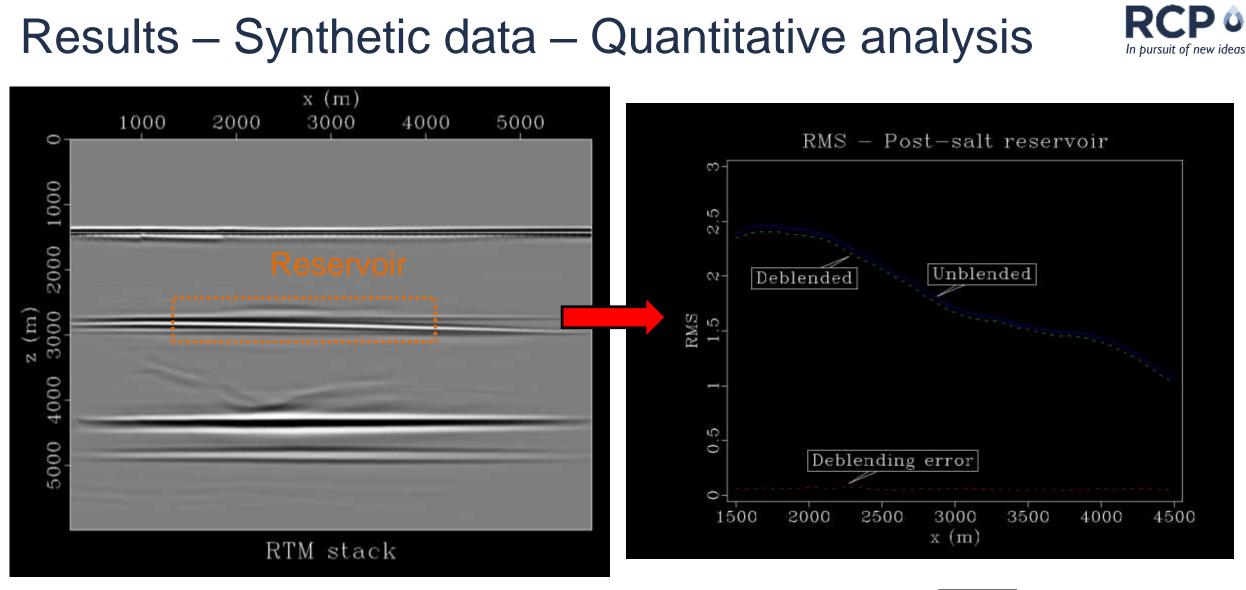
Data after LS-solution



48







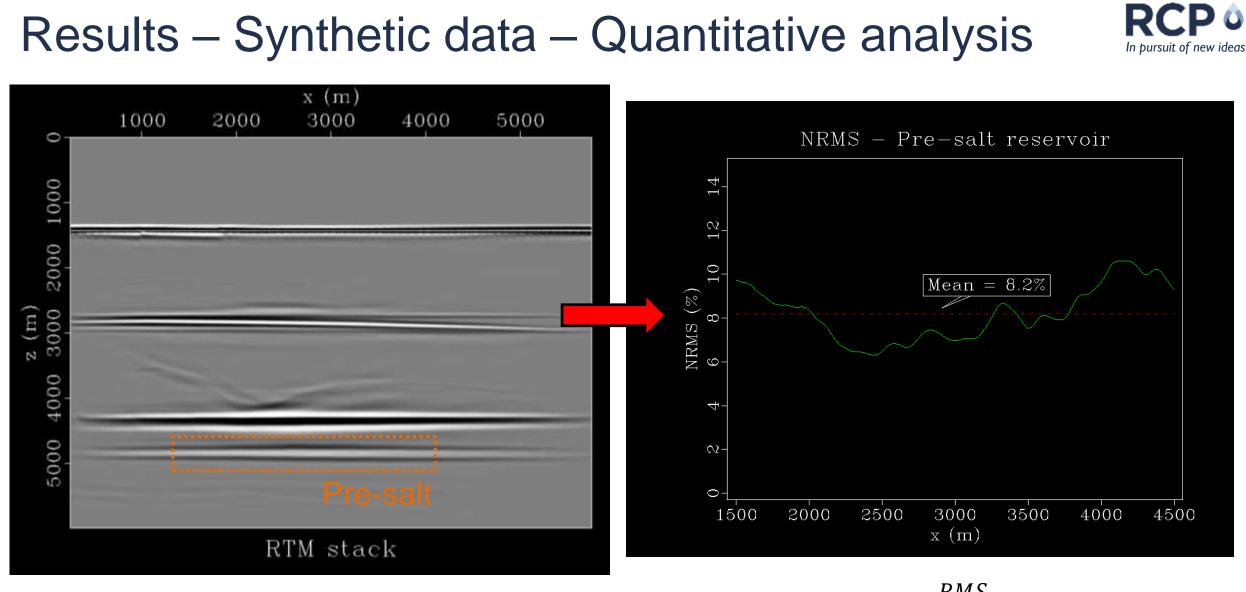
$$RMS = \frac{\sqrt{\sum_{i=1}^{n} x_i^2}}{n}$$

Results – Synthetic data – Quantitative analysis In pursuit of new ideas x (m) 1000 3000 2000 4000 5000 RMS - Pre-salt reservoir 0 33 2000 1000 2:5 \sim z (m) 3000 RMS1,5 Unblended 5000 4000 Deblended 0.5 Deblending error $^{-}$ 4000 1500 2000 2500 3000 3500 4500 x (m) RTM stack

$$RMS = \frac{\sqrt{\sum_{i=1}^{n} x_i^2}}{n}$$

Results – Synthetic data – Quantitative analysis In pursuit of new ideas x (m) 1000 2000 3000 4000 5000 NRMS - Post-salt reservoir 0 2000 1000 14 1 10NRMS (%)6 8 z (m) 3000 5000 4000 Mean = 3.3% 4 \sim Ō 3500 4000 1500 2000 2500 3000 4500 x (m) RTM stack

 $NRMS = 200 \times \frac{RMS_{(Unbl-Debl)}}{RMS_{Unbl} + RMS_{Debl}}$



$$NRMS = 200 \times \frac{RMS_{(Unbl-Debl)}}{RMS_{Unbl} + RMS_{Debl}}$$

Outline

Objective

- Theoretical background
 - Blending
 - Deblending

Results

- Synthetic data
- Field data (preliminary results)
- Final remarks
- Next steps

Results – Field data – Jubarte PRM (Base survey)

Sail-line

General Acquisition Parameters:

Shot Survey Area = 11km x 11km

Shot grid = 25m x 25m

Shots per sail-line = 440

Receiver patch = 3km x 3km

Receiver grid = $300m \times 50m$

 \mathbf{N}° receivers = 712

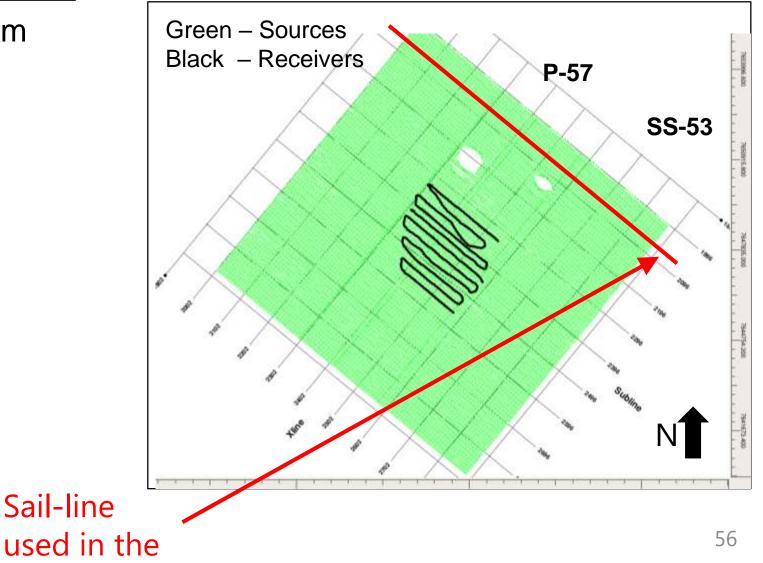
Record Length = 10,240 ms

Blending simulation:

 N° of sources/record = 4

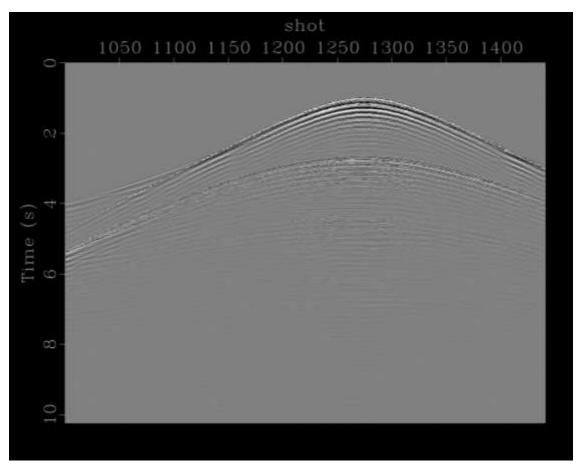
Blending neighbor shots

Firing int. = 2.5 ± 0.4 sec

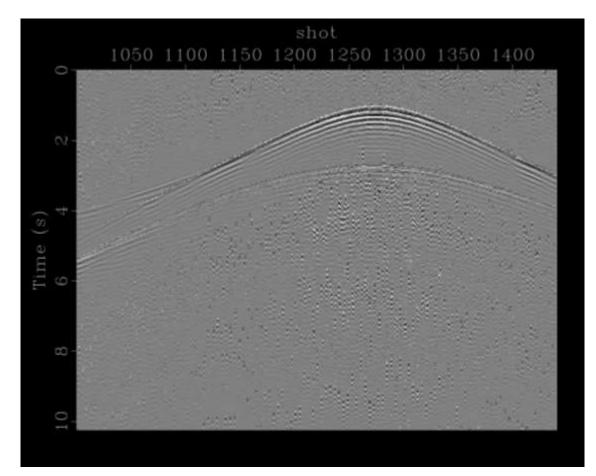


Comparative Analysis in the Receiver Domain

Results – Field data (Receiver domain)

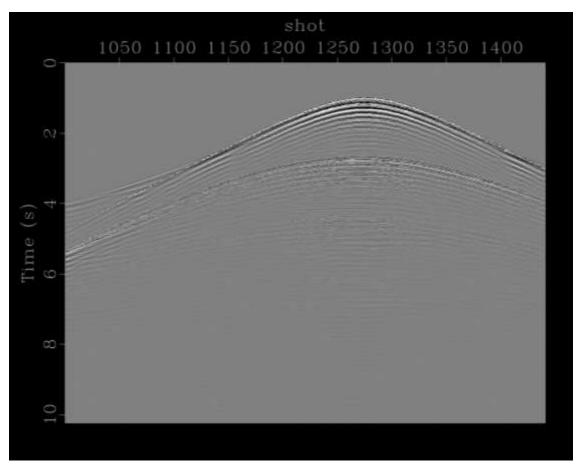


Original unblended data

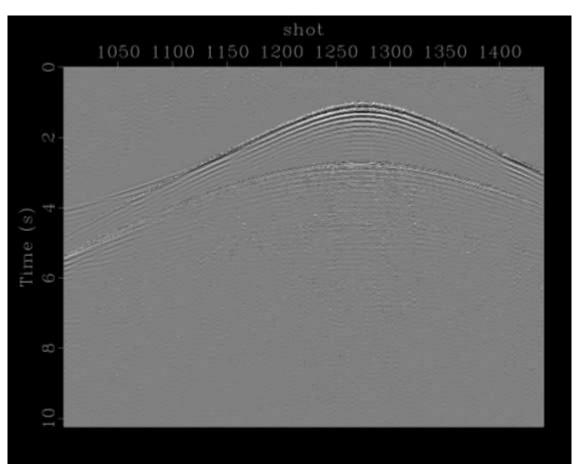


Data after LS-solution

Results – Field data (Receiver domain)

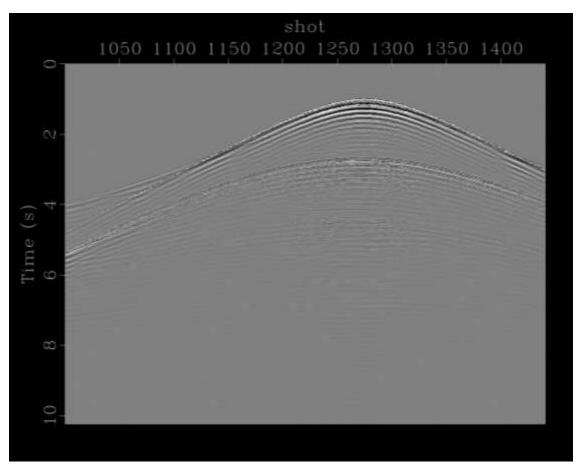


Original unblended data

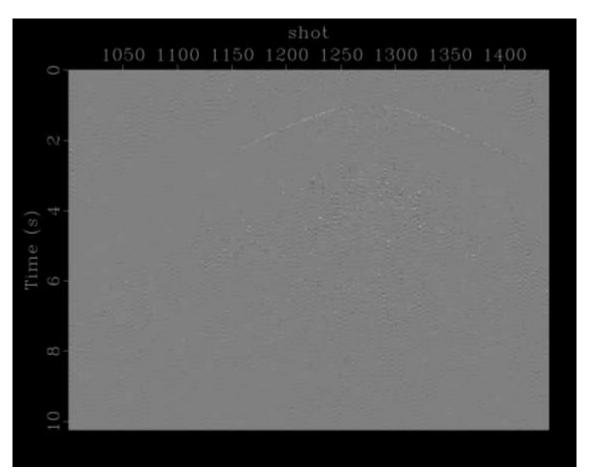


Deblended data after 20 iterations

Results – Field data (Receiver domain)

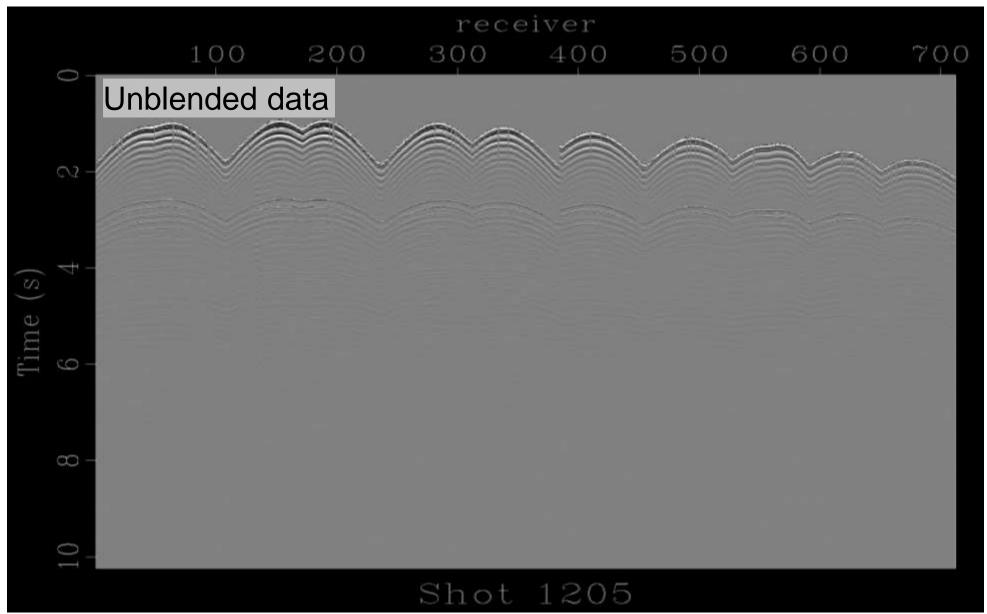


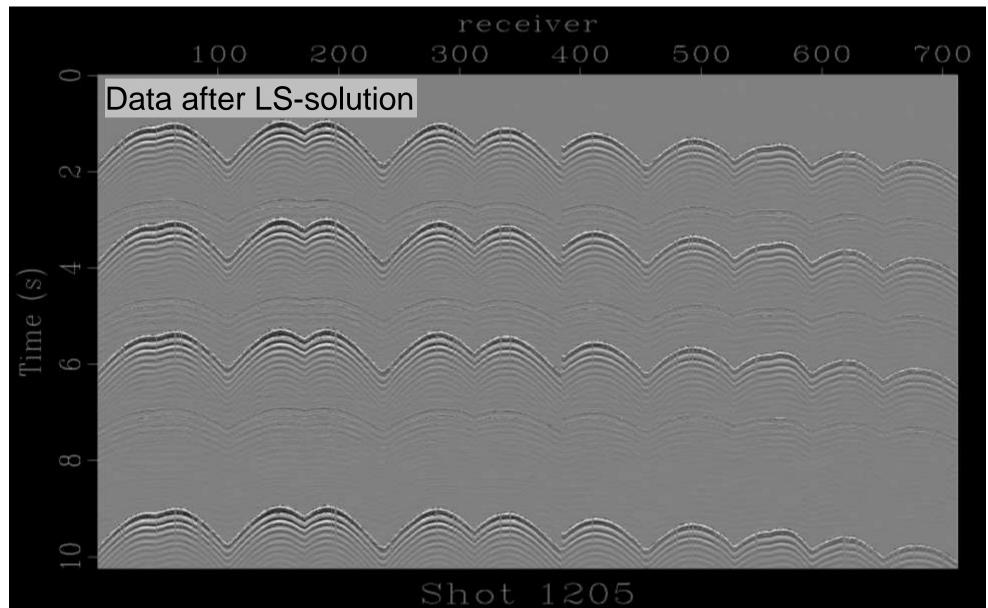
Original unblended data

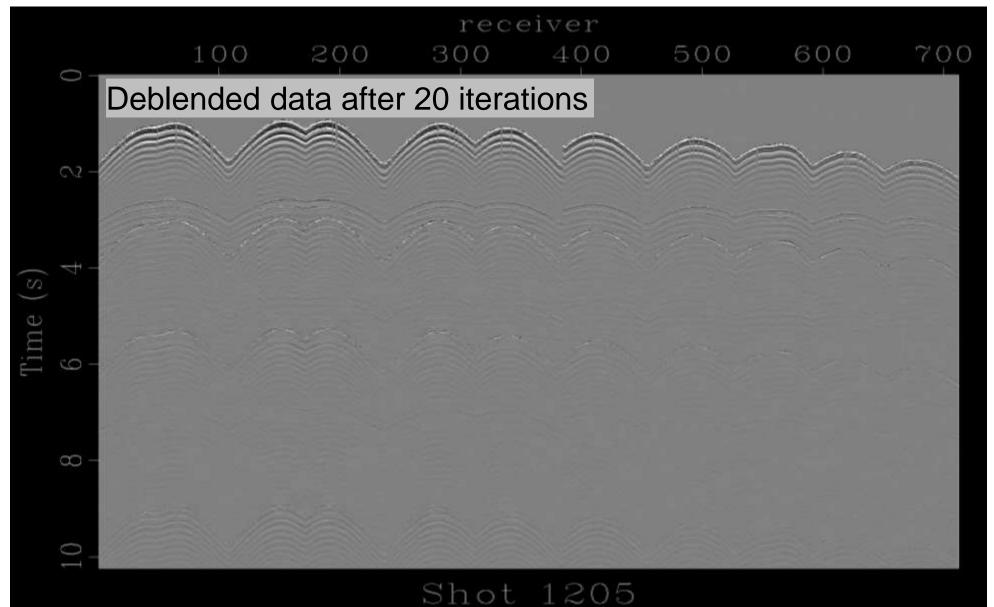


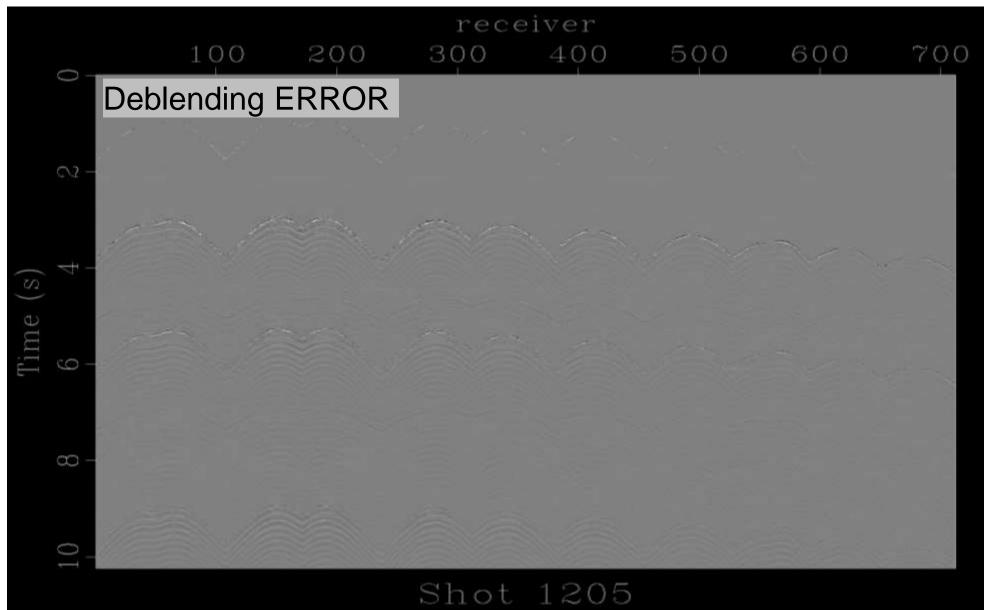
Deblending ERROR

Comparative Analysis in the Shot Domain









Outline

Objective

- Theoretical background
 - Blending
 - Deblending
- A Results
 - Synthetic data
 - Field data

Final remarks

Next steps

 Blended acquisitions are a very effective way to acquire seismic data at lower costs;

 Although mathematically simple, the iterative deblending method (with a good filtering operator) can provide satisfactory results;

Quantitative analysis (using RMS and NRMS attributes) is essential to numerically validate deblending results.

Outline

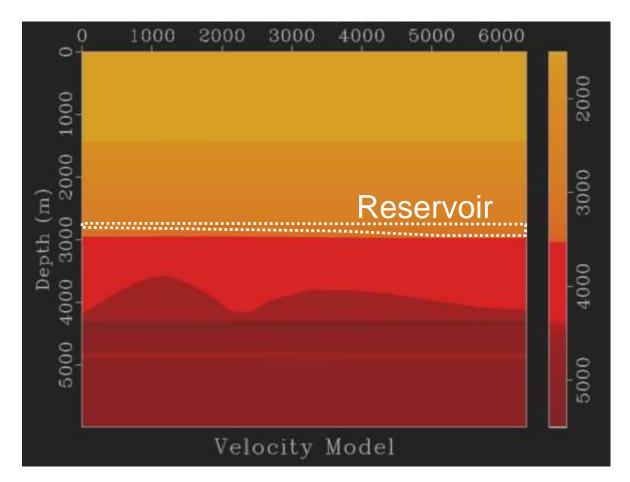
Objective

- Theoretical background
 - Blending
 - Deblending
- A Results
 - Synthetic data
 - Field data
- Final remarks
- Next steps

Next steps

Improve the iterative deblending results in field data;

Model a new synthetic seismic data simulating production effects and analyze how blending and deblending procedures will affect the 4D signal;



Next steps

Oblemation Deblemation Debl

