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Machine Learning Applications for
Well Data Prediction/Quality-Control

Objective Preliminary Results Proposed Workflow

Data

Future Work

• Evaluate ML prediction ability for 
various feature/label 
combinations in well data

• Determine relationships within 
data 

• Assess the performance of 
different ML models 

• Compare ML to other methods
• Automate well log prediction/QC

Harrison Schumann

• Evaluate performance of other ML 
models

• Apply method to other datasets 
(Chalk Bluff)

• Use ML to understand relationships 
in well data

• Develop proposed workflow for 
automated well log prediction/QC

Figure 1. Well logs and seismic velocities from the
Austin Chalk and Eagle Ford formations. We used
the four well logs (our features) to assess the
abilities for ML to predict P- and S-wave velocities
(our targets).

Figure 2. P- and S-wave velocities predicted by several ML
models using only the four well logs shown in Figure 1.

Figure 3. Comparison between a rock physics model
(Durmus, 2019) and the RNN model (shown in Figure 2) on
the Eagle Ford section only. The rock physics model is
calculated from mineralogy, kerogen, water saturation, and
porosity data.
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